Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quadrupole molecular

Figure 4.18 from Buckingham A D 1959. Molecular Quadrupole Moments. Quarterly/ Reviews of the Chemical Society 13 183-214. Reproduced by permission of The Royal Society of Chemistry. [Pg.19]

The range of systems that have been studied by force field methods is extremely varied. Some force fields liave been developed to study just one atomic or molecular sp>ecies under a wider range of conditions. For example, the chlorine model of Rodger, Stone and TUdesley [Rodger et al 1988] can be used to study the solid, liquid and gaseous phases. This is an anisotropic site model, in which the interaction between a pair of sites on two molecules dep>ends not only upon the separation between the sites (as in an isotropic model such as the Lennard-Jones model) but also upon the orientation of the site-site vector with resp>ect to the bond vectors of the two molecules. The model includes an electrostatic component which contciins dipwle-dipole, dipole-quadrupole and quadrupole-quadrupole terms, and the van der Waals contribution is modelled using a Buckingham-like function. [Pg.249]

The Q in Q/TOF stands for quadrupole (see Chapter 25, Quadrupole Ion Optics ). A Q/TOF instrument — normally used with an electrospray ion inlet — measures mass spectra directly to obtain molecular or quasi-molecular mass information, or it can be switched rapidly to MS/MS mode to examine structural features of ions. The analyzer layout is presented in Figure 20.2. [Pg.153]

A single instrument — a hybrid of a quadrupole and a TOF analyzer — can measure a full mass spectrum of ions produced in an ion source. If these are molecular ions, their relative molecular mass is obtained. Alternatively, precursor ions can be selected for MS/MS to give a fragment-ion spectrum characteristic of the precursor ions chosen, which gives structural information about the original molecule. [Pg.173]

Metastable and collisionally induced fragment ions can be detected efficiently by a triple quadrupole instmment. By linking the scanning regions of the first and third quadrupoles, important information about molecular structure is easily obtained. [Pg.235]

This last m/z value is easy to measure accurately, and, if its relationship to the true mass is known (n = 10), then the true mass can be measured very accurately. The multicharged ions have typical m/z values of <3000 Da, which means that conventional quadrupole or magnetic-sector analyzers can be used for mass measurement. Actually, the spectrum consists of a series of multicharged protonated molecular ions [M + nWY for each component present in the sample. Each ion in the series differs by plus and minus one charge from adjacent ions ([M + uH] + n -an integer series for example, 1, 2, 3,. .., etc.). Mathematical transformation of the spectrum produces a true molecular mass profile of the sample (Figure 40.5). [Pg.291]

Almost any type of analyzer could be used to separate isotopes, so their ratios of abundances can be measured. In practice, the type of analyzer employed will depend on the resolution needed to differentiate among a range of isotopes. When the isotopes are locked into multielement ions, it becomes difficult to separate all of the possible isotopes. For example, an ion of composition CgHijOj will actually consist of many compositions if all of the isotopes ( C, C, H, H, 0, O, and 0) are considered. To resolve all of these isotopic compositions before measurement of their abundances is difficult. For low-molecular-mass ions (HjO, COj) or for atomic ions (Ca, Cl), the problems are not so severe. Therefore, most accurate isotope ratio measurements are made on low-molecular-mass species, and resolution of these even with simple analyzers is not difficult. The most widely used analyzers are based on magnets, quadrupoles, ion traps, and time-of-flight instruments. [Pg.365]

Triple quadrupole instruments can be used to detect metastable ions or can be used for linked scanning to obtain information about molecular structure. [Pg.412]

N-protonation the absolute magnitude of the Ad values is larger than for Af-methylation <770MR(9)53>. Nuclear relaxation rates of and have been measured as a function of temperature for neat liquid pyridazine, and nuclear Overhauser enhancement has been used to separate the dipolar and spin rotational contributions to relaxation. Dipolar relaxation rates have been combined with quadrupole relaxation rates to determine rotational correlation times for motion about each principal molecular axis (78MI21200). NMR analysis has been used to determine the structure of phenyllithium-pyridazine adducts and of the corresponding dihydropyridazines obtained by hydrolysis of the adducts <78RTC116>. [Pg.8]

It is very evident in Figure 3 that the chemical complexity of Hasteloy presents special problems for mass spectrometric analysis using a quadrupole mass spectrometer with low mass resolution. Molecular ions comprised of combinations of matrix and plasma atoms are formed in abundance and will obscure many elements... [Pg.577]

Molecular ion mass interferences are not as prevalent for the simpler matrices, as is clear from the mass spectrum obtained for the Pechiney 11630 A1 standard sample by electron-gas SNMSd (Figure 4). For metals like high-purity Al, the use of the quadrupole mass spectrometer can be quite satisfiictory. The dopant elements are present in this standard at the level of several tens of ppm and are quite evident in the mass spectrum. While the detection limit on the order of one ppm is comparable to that obtained from optical techniques, the elemental coverage by SNMS is much more comprehensive. [Pg.578]

To minimize surface damage, static SIMS mass spectrometers should be as efficient as possible for detecting the total yield of secondary ions from a surface. Also, to be able to separate elemental from molecular species, and molecular species from each other, the mass resolution usually given as the mass m divided by the separable mass Am, should be very high. With this in mind, two types of mass spectrometer have been used - in early work mainly quadrupole mass filters and, more recently, time-of-flight mass spectrometers. [Pg.89]

One prominent example of rods with a soft interaction is Gay-Berne particles. Recently, elastic properties were calculated [89,90]. Using the classical Car-Parrinello scheme, the interactions between charged rods have been considered [91]. Concerning phase transitions, the sohd-fluid equihbria for hard dumbbells that interact additionally with a quadrupolar force was considered [92], as was the nematic-isotropic transition in a fluid of dipolar hard spherocylinders [93]. The influence of an additional attraction on the phase behavior of hard spherocylinders was considered by Bolhuis et al. [94]. The gelation transition typical for clays was found in a system of infinitely thin disks carrying point quadrupoles [95,96]. In confined hquid-crystalline films tilted molecular layers form near each wall [97]. Chakrabarti has found simulation evidence of critical behavior of the isotropic-nematic phase transition in a porous medium [98]. [Pg.764]

At the molecular level, electric quadrupoles can lead to useful structural information. Thus, whilst the absence of a permanent electric dipole in CO2 simply means that the molecule is linear, the fact that the electric quadrupole moment is negative shows that our simple chemical intuition of 0 C" 0 is correct. The definition of quadrupole moment is only independent of the coordinate origin when the charges sum to zero and when the electric dipole moment is zero. [Pg.269]

Molecular electric quadrupole moments are more elusive animals, and they are not particularly easy to determine experimentally. Prior to 1970, the only direct routes to these quantities were from the Kerr and Cotton-Mouton effects. They can now be obtained from microwave Zeeman spectroscopy, to fair accuracy. It is fair to say that direct calculation offers a faster and more reliable route to this property than experiment. [Pg.276]

Of course there arc other contributors to the value of q besides the valence electrons. Additional effects are due to molecular interactions,22 induced quadrupole moments (Sternheimer, R. M., Phys. Rev. 105, 158, (1957), etc.)... [Pg.190]


See other pages where Quadrupole molecular is mentioned: [Pg.38]    [Pg.38]    [Pg.204]    [Pg.204]    [Pg.205]    [Pg.213]    [Pg.237]    [Pg.266]    [Pg.12]    [Pg.82]    [Pg.3]    [Pg.185]    [Pg.243]    [Pg.278]    [Pg.284]    [Pg.21]    [Pg.863]    [Pg.2001]    [Pg.547]    [Pg.612]    [Pg.166]    [Pg.823]    [Pg.271]    [Pg.222]    [Pg.236]    [Pg.200]    [Pg.88]    [Pg.187]    [Pg.188]    [Pg.194]    [Pg.205]    [Pg.1029]    [Pg.24]   
See also in sourсe #XX -- [ Pg.10 , Pg.13 , Pg.29 , Pg.69 ]




SEARCH



Measurements of molecular quadrupole coupling constants

Molecular quadrupole-moment

Molecular quadrupole-moment parameter

Nuclear Quadrupole Resonance on Molecular Compounds

Nuclear quadrupole resonance molecular complexes

© 2024 chempedia.info