Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface analysis limitations

The importance of low pressures has already been stressed as a criterion for surface science studies. However, it is also a limitation because real-world phenomena do not occur in a controlled vacuum. Instead, they occur at atmospheric pressures or higher, often at elevated temperatures, and in conditions of humidity or even contamination. Hence, a major tlmist in surface science has been to modify existmg techniques and equipment to pemiit detailed surface analysis under conditions that are less than ideal. The scamiing tunnelling microscope (STM) is a recent addition to the surface science arsenal and has the capability of providing atomic-scale infomiation at ambient pressures and elevated temperatures. Incredible insight into the nature of surface reactions has been achieved by means of the STM and other in situ teclmiques. [Pg.921]

Imaging of Surfaces—Analysis of Surface Morphology. Several important techniques can help answer the question what does the surface look like This question is often the first one to be posed ia the characterization of a new surface or iaterface. Physical imaging of the surface is necessary to distinguish the relevant features important for understanding the whole surface and is essential for accurate iaterpretation of data from other surface analysis techniques which might later be appHed to a more limited region of the surface or iaterface. [Pg.270]

The detection of impurities or surface layers (e.g., oxides) on thick specimens is a special situation. Although the X-ray production and absorption assumptions used for thin specimens apply, the X-ray spectra are complicated by the background and characteristic X rays generated in the thick specimen. Consequently, the absolute detection limits are not as good as those given above for thin specimens. However, the detection limits compare very favorably with other surface analysis techniques, and the results can be quantified easily. To date there has not been any systematic study of the detection limits for elements on surfaces however, representative studies have shown that detectable surface concentrations for carbon and... [Pg.361]

Ion Scattering Spectroscopy (ISS) is one of the most powerful and practical methods of surface analysis available. However, it is undemtilized due to a lack of understanding about its application and capabilities. This stems from its history, the limited number of high-performance instmments manufactured, and the small number of experienced surface scientists who have actually used ISS in extensive applications. Ironically, it is one of the easiest and most convenient sur ce analytical instruments to use and it provides usehil information for almost any type of solid material. [Pg.514]

An example of an analysis done on polysilicon and single-crystal Czochralski silicon (CZ) is shown in Table 1. As can be seen, polysilicon, which was used to grow the crystal, is dirtier than the CZ silicon. This is expected, since segregation coefficients limit the incorporation of each element into the crystal boule during the crystal growth process. All values shown in the table are from bulk analysis. Table 2 shows NAA data obtained in an experiment where surface analysis was accom-... [Pg.676]

Surface analysis by non-resonant (NR-) laser-SNMS [3.102-3.106] has been used to improve ionization efficiency while retaining the advantages of probing the neutral component. In NR-laser-SNMS, an intense laser beam is used to ionize, non-selec-tively, all atoms and molecules within the volume intersected by the laser beam (Eig. 3.40b). With sufficient laser power density it is possible to saturate the ionization process. Eor NR-laser-SNMS adequate power densities are typically achieved in a small volume only at the focus of the laser beam. This limits sensitivity and leads to problems with quantification, because of the differences between the effective ionization volumes of different elements. The non-resonant post-ionization technique provides rapid, multi-element, and molecular survey measurements with significantly improved ionization efficiency over SIMS, although it still suffers from isoba-ric interferences. [Pg.132]

Laser desorption methods (such as LD-ITMS) are indicated as cost-saving real-time techniques for the near future. In a single laser shot, the LDI technique coupled with Fourier-transform mass spectrometry (FTMS) can provide detailed chemical information on the polymeric molecular structure, and is a tool for direct determination of additives and contaminants in polymers. This offers new analytical capabilities to solve problems in research, development, engineering, production, technical support, competitor product analysis, and defect analysis. Laser desorption techniques are limited to surface analysis and do not allow quantitation, but exhibit superior analyte selectivity. [Pg.737]

Contamination can be present not only as a surface deposit or a surface feature but can also be located within the bulk of a manufactured part. The selection of an appropriate series of analytical techniques, applied to failure, defect, and contamination analysis projects, is influenced by the location of the contamination or defect and the optical properties of the manufactured component. Microscopic analysis of opaque parts is limited to surface analysis... [Pg.607]

J. C. Vickerman and D. Briggs (eds.), TOF-SIMS Surface Analysis by Mass Spectrometry. Huddersfield, UK, IM Publications and Surface Spectra Limited, 2001. [Pg.286]

In spite of the development of physicochemical techniques for surface analysis, spectroscopic methods applicable to the study of bonding between adsorbed metal ion species and substrate are limited, especially those applicable to in situ measurement at interfaces between solid and aqueous phases (1,2). In previous papers, we showed that emission Mossbauer measurement is useful in clarifying the chemical bonding environment of dilute metal ions adsorbed on magnetic metal oxide surfaces (3,1 ) ... [Pg.403]

Problems such as diffusional limitations and the analysis of catalyst composition occur with solid-phase catalysts. Much work has been done on diffusion in bound enzymes (for reviews, see 24 and 88). In our work we used ninhydrin, which is a reagent ideal for surface analysis amino acid analysis is used wherever possible. Amine depletion as followed by ninhydrin is not exact, but some quantitative guides are obtained. Certainly synthetic catalysts must be made with bonds other than amide bonds and components other than those compounds that are detectable on the amino acid analyzer. [Pg.222]

The importance of surface analysis for evaluating the environmental effects of toxic substances is becoming more apparent as the result of recent work in this field. Chapter 9 describes ESCA, Auger, Ion Microprobe, and SIMS surface analysis techniques for atmospheric particulates. These techniques overcome the obvious limitations of bulk analysis, that is, the wide variability in the physicochemical characteristics of different particles. [Pg.1]

Actinide metal samples are characterized by chemical and structure analysis. Multielement analysis by spark source mass spectrometry (SSMS) or inductively coupled argon plasma (ICAP) emission spectroscopy have lowered the detection limit for metallic impurities by 10 within the last two decades. The analysis of O, N, H by vacuum fusion requires large sample, but does not distinguish between bulk and surface of the material. Advanced techniques for surface analysis are being adapted for investigation of radioactive samples (Fig. 11) ... [Pg.70]

We now briefly describe the mechanism, capabilities and limitations of the main techniques used in surface analysis classifying them by the nature of the information obtained with them. [Pg.23]

This very short treatment of reversal techniques has the following basis. There are certainly treatments in the literature of chronopotentiometiy dealing with current reversal, or reversed-step voltammetry. However, their validity has to be diligently examined in each application. For example, is an assumption of a first-order reaction tacitly involved, when the actual solution may correspond to a fractional reaction order Another reason for the limited treatment has an eye on the future. There are those who see in the rapid development of in situ spectroscopic techniques (see, e.g., Section 6.3), together with advances in STM and AFM, the future of surface analysis in electrochemistry. If these surface spectroscopic techniques continue to grow in power, and give information on surface radicals in time ranges as short as milliseconds, transient techniques to catch intermediate radicals adsorbed on surfaces may become less needed. [Pg.700]


See other pages where Surface analysis limitations is mentioned: [Pg.16]    [Pg.356]    [Pg.318]    [Pg.297]    [Pg.308]    [Pg.363]    [Pg.442]    [Pg.604]    [Pg.125]    [Pg.178]    [Pg.235]    [Pg.256]    [Pg.348]    [Pg.366]    [Pg.368]    [Pg.374]    [Pg.334]    [Pg.88]    [Pg.460]    [Pg.217]    [Pg.247]    [Pg.184]    [Pg.185]    [Pg.305]    [Pg.365]    [Pg.228]    [Pg.146]    [Pg.17]    [Pg.132]    [Pg.140]    [Pg.444]    [Pg.23]    [Pg.28]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Surface analysis

Surface limitations

© 2024 chempedia.info