Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid aromatics

In concentrated sulfuric acid, aromatic polyisocyanides are subject to sulfona-tion. Poly(isopropyl isocyanide) is dissolved in 97%H2S04, and is reprecipitated by the addition of water. Infrared spectra show that some structural change, e.g. hydrolysis, has taken place (26). Poly(sec-butyl isocyanide) is dissolved by the acidic hexafluoroisopropanol with some attendant browning of the solution (7). In spite of the theoretical complexities of polyelectrolytic character introduced into the solution characterization of polyisocyanides in strongly acidic media, such media at least allow viscometric indexing of the various samples of the otherwise insoluble polyisocyanides. [Pg.129]

It was, however, observed that such systems under appropriate conditions of concentration, solvent, molecular weight, temperature, etc. form a liquid crystalline solution. Perhaps a little digression is in order here to say a few words about liquid crystals. A liquid crystal has a structure intermediate between a three-dimensionally ordered crystal and a disordered isotropic liquid. There are two main classes of liquid crystals lyotropic and thermotropic. Lyotropic liquid crystals are obtained from low viscosity polymer solutions in a critical concentration range while thermotropic liquid crystals are obtained from polymer melts where a low viscosity phase forms over a certain temperature range. Aromatic polyamides and aramid type fibers are lyotropic liquid crystal polymers. These polymers have a melting point that is high and close to their decomposition temperature. One must therefore spin these from a solution in an appropriate solvent such as sulfuric acid. Aromatic polyesters, on the other hand, are thermotropic liquid crystal polymers. These can be injection molded, extruded or melt spun. [Pg.81]

Acidi Sulphuric Aromatic [sulfuric acid, aromatic] gtt. xxiv. [Pg.282]

Introduction. It will be recalled that one of the most common methods of distinguishing between aromatic and aliphatic hydrocarbons is the difference in the rates of their reactions with sulfuric acid. Aromatic hydrocarbons readily form sulfonic acids when heated with concentrated sulfuric acid at temperatures varying from 80 to 200 . Saturated paraffin hydrocarbons, on the other hand, do not react with sulfuric acid under comparable conditions. A number of saturated paraffins are sulfonated directly by using fuming sulfuric acid and heating under pressure, but the sulfonic acids of the lower paraffin hydrocarbons are prepared by reacting alkyl halides with alkali sulfites. The sulfonic acids of the aromatic hydrocarbons are of much greater importance than the sulfonic acids of paraffins. [Pg.289]

During the polymerization of aromatic diacids and diesters with hydrazine in fuming sulfuric acid, aromatic oxadiazole units are formed first which are subsequently methylated by monomethyl sulfate or its homologues (derived from reaction of the diester with H2SO4) forming an aromatic N-methyl oxadiazolium polymer. This polymer is hydrolyzed during the spinning operation to the fiber polymer, i.e., p-/m-phenylene oxadiazole/N-methyl hydrazide copolymer. [Pg.366]

Removal of the water as it is formed will drive the reaction to completion and will allow one to use the stoichiometric amount of sulfuric acid. Aromatic sulfonic acids hydrolyze easily when heated in the presence of water and dilute acids. [Pg.191]

The qualitative fact that ethers behave as bases to Lewis acids is nearly as old as organic chemistry itself (277). Ether oxonium salts have been isolated (252) and careful studies of their physical properties make it plain that a ptoton is coordinated to the ether oxygen. Several cryoscopic studies (134,196) indicate that aliphatic ethers, with the exception of several negatively substituted ones, are completely protonated in concentrated sulfuric acid. Aromatic ethers are apt to be too insoluble for good cryoscopic work and the problem of rapid decomposition makes exact measurements of f-factors in sulfuric acid difficult for ethers in general. [Pg.289]

Sulfonic acids can come from the sulfonation of oil cuts from white oil production by sulfuric acid treatment. Sodium salts of alkylaromatic sulfonic acids are compounds whose aliphatic chains contain around 20 carbon atoms. The aromatic ring compounds are mixtures of benzene and naphthalene rings. [Pg.360]

During my Cleveland years, I also continued and extended my studies in nitration, which I started in the early 1950s in Hungary. Conventional nitration of aromatic compounds uses mixed acid (mixture of nitric acid and sulfuric acid). The water formed in the reaetion dilutes the acid, and spent aeid disposal is beeoming a serious environ-... [Pg.104]

To solve some of the environmental problems of mixed-acid nitration, we were able to replaee sulfuric acid with solid superacid catalysts. This allowed us to develop a novel, clean, azeotropic nitration of aromatics with nitric acid over solid perfluorinated sulfonic acid catalysts (Nafion-H). The water formed is continuously azeotroped off by an excess of aromatics, thus preventing dilution of acid. Because the disposal of spent acids of nitration represents a serious environmental problem, the use of solid aeid eatalysts is a significant improvement. [Pg.105]

Among the variety of electrophilic species present m concentrated sulfuric acid sulfur tnoxide (Figure 12 4) is probably the actual electrophile m aromatic sulfonation We can represent the mechanism of sulfonation of benzene by sulfur tnoxide by the sequence of steps shown m Figure 12 5... [Pg.479]

Sulfonation (Section 12 4) Sulfonic acids are formed when aromatic compounds are treated with sources of sulfur trioxide These sources can be concentrated sulfuric acid (for very reactive arenes) or solutions of sulfur trioxide in sulfuric acid (for ben zene and arenes less reactive than ben zene)... [Pg.510]

Most phenohc foams are produced from resoles and acid catalyst suitable water-soluble acid catalysts are mineral acids (such as hydrochloric acid or sulfuric acid) and aromatic sulfonic acids (63). Phenohc foams can be produced from novolacs but with more difficulty than from resoles (59). Novolacs are thermoplastic and require a source of methylene group to permit cure. This is usually suppHed by hexamethylenetetramine (64). [Pg.406]

Sulfonation of aromatic hydrocarbons with sulfuric acid is cataly2ed by hydrogen fluoride or, at lower temperatures, by boron trifluoride (144). The products obtained are more uniform and considerably less sulfuric acid is needed, probably because BF forms complexes with the water formed ia the reaction, and thus prevents dilution of the sulfuric acid. [Pg.560]

Dinitrogen tetroxide is an effective Eriedel-Crafts nitrating agent (152) for aromatics in the presence of aluminum chloride, ferric chloride, or sulfuric acid (153). Dinitrogen pentoxide is a powerhil nitrating agent, even in the absence of catalysts, preferably in sulfuric acid solution (154). SoHd dinitrogen pentoxide is known to be the nitronium nitrate, (N02) (N02). The use of BE as catalyst has been reported (155). [Pg.561]

Starting from Benzene. In the direct oxidation of benzene [71-43-2] to phenol, formation of hydroquinone and catechol is observed (64). Ways to favor the formation of dihydroxybenzenes have been explored, hence CuCl in aqueous sulfuric acid medium catalyzes the hydroxylation of benzene to phenol (24%) and hydroquinone (8%) (65). The same effect can also be observed with Cu(II)—Cu(0) as a catalytic system (66). Efforts are now directed toward the use of Pd° on a support and Cu in aqueous acid and in the presence of a reducing agent such as CO, H2, or ethylene (67). Aromatic... [Pg.489]

Make acid yields coumaUc acid when treated with fuming sulfuric acid (19). Similar treatment of malic acid in the presence of phenol and substituted phenols is a facile method of synthesi2ing coumarins that are substituted in the aromatic nucleus (20,21) (see Coumarin). Similar reactions take place with thiophenol and substituted thiophenols, yielding, among other compounds, a red dye (22) (see Dyes and dye intermediates). Oxidation of an aqueous solution of malic acid with hydrogen peroxide (qv) cataly2ed by ferrous ions yields oxalacetic acid (23). If this oxidation is performed in the presence of chromium, ferric, or titanium ions, or mixtures of these, the product is tartaric acid (24). Chlorals react with malic acid in the presence of sulfuric acid or other acidic catalysts to produce 4-ketodioxolones (25,26). [Pg.522]

The aHphatic iodine derivatives are usually prepared by reaction of an alcohol with hydroiodic acid or phosphoms trHodide by reaction of iodine, an alcohol, and red phosphoms addition of iodine monochloride, monobromide, or iodine to an olefin replacement reaction by heating the chlorine or bromine compound with an alkaH iodide ia a suitable solvent and the reaction of triphenyl phosphite with methyl iodide and an alcohol. The aromatic iodine derivatives are prepared by reacting iodine and the aromatic system with oxidising agents such as nitric acid, filming sulfuric acid, or mercuric oxide. [Pg.366]

The chemical oil contains ca 50 wt % naphthalene, 6 wt % tar acids, 3 wt % tar bases, and numerous other aromatic compounds. The chemical oil is processed to remove the tar acids by contacting with dilute sodium hydroxide and, in a few cases, is next treated to remove tar bases by washing with sulfuric acid. [Pg.484]

The term naphthenic acid, as commonly used in the petroleum industry, refers collectively to all of the carboxyUc acids present in cmde oil. Naphthenic acids [1338-24-5] are classified as monobasic carboxyUc acids of the general formula RCOOH, where R represents the naphthene moiety consisting of cyclopentane and cyclohexane derivatives. Naphthenic acids are composed predorninandy of aLkyl-substituted cycloaUphatic carboxyUc acids, with smaller amounts of acycHc aUphatic (paraffinic or fatty) acids. Aromatic, olefinic, hydroxy, and dibasic acids are considered to be minor components. Commercial naphthenic acids also contain varying amounts of unsaponifiable hydrocarbons, phenoHc compounds, sulfur compounds, and water. The complex mixture of acids is derived from straight-mn distillates of petroleum, mosdy from kerosene and diesel fractions (see Petroleum). [Pg.509]

Organic Reactions. Nitric acid is used extensively ia iadustry to nitrate aHphatic and aromatic compounds (21). In many iastances nitration requires the use of sulfuric acid as a dehydrating agent or catalyst the extent of nitration achieved depends on the concentration of nitric and sulfuric acids used. This is of iadustrial importance ia the manufacture of nitrobenzene and dinitrotoluene, which are iatermediates ia the manufacture of polyurethanes. Trinitrotoluene (TNT) is an explosive. Various isomers of mononitrotoluene are used to make optical brighteners, herbicides (qv), and iasecticides. Such nitrations are generally attributed to the presence of the nitronium ion, NO2, the concentration of which iacreases with acid strength (see Nitration). [Pg.39]

Dinitrochlorobenzene can be manufactured by either dinitration of chlorobenzene in filming sulfuric acid or nitration ofy -nitrochlorobenzene with mixed acids. Further substitution on the aromatic ring is difficult because of the deactivating effect of the chlorine atom, but the chlorine is very reactive and is displaced even more readily than in the mononitrochlorobenzenes. [Pg.68]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Peroxomonosulfuric acid oxidi2es cyanide to cyanate, chloride to chlorine, and sulfide to sulfate (60). It readily oxidi2es carboxyflc acids, alcohols, alkenes, ketones, aromatic aldehydes, phenols, and hydroquiaone (61). Peroxomonosulfuric acid hydroly2es rapidly at pH <2 to hydrogen peroxide and sulfuric acid. It is usually made and used ia the form of Caro s acid. [Pg.94]

Reduction. Just as aromatic amine oxides are resistant to the foregoing decomposition reactions, they are more resistant than ahphatic amine oxides to reduction. Ahphatic amine oxides are readily reduced to tertiary amines by sulfurous acid at room temperature in contrast, few aromatic amine oxides can be reduced under these conditions. The ahphatic amine oxides can also be reduced by catalytic hydrogenation (27), with 2inc in acid, or with staimous chloride (28). For the aromatic amine oxides, catalytic hydrogenation with Raney nickel is a fairly general means of deoxygenation (29). Iron in acetic acid (30), phosphoms trichloride (31), and titanium trichloride (32) are also widely used systems for deoxygenation of aromatic amine oxides. [Pg.190]

Sulfonation. Aniline reacts with sulfuric acid at high temperatures to form -aminoben2enesulfonic acid (sulfanilic acid [121 -57-3]). The initial product, aniline sulfate, rearranges to the ring-substituted sulfonic acid (40). If the para position is blocked, the (9-aminoben2enesulfonic acid derivative is isolated. Aminosulfonic acids of high purity have been prepared by sulfonating a mixture of the aromatic amine and sulfolane with sulfuric acid at 180-190°C (41). [Pg.231]

Nitration. Direct nitration of aromatic amines with nitric acid is not a satisfactory method, because the amino group is susceptible to oxidation. The amino group can be protected by acetylation, and the acetylamino derivative is then used in the nitration step. Nitration of acetanilide in sulfuric acid yields the 4-nitro compound that is hydroly2ed to -rutroaruline [100-01-6]. [Pg.231]

Nitration of aromatic amines with urea nitrate in sulfuric acid is reported to yield the -nitro derivative exclusively (44). When the para position is blocked, the meta product is obtained in excellent yield. [Pg.231]


See other pages where Sulfuric acid aromatics is mentioned: [Pg.75]    [Pg.962]    [Pg.922]    [Pg.110]    [Pg.758]    [Pg.75]    [Pg.962]    [Pg.922]    [Pg.110]    [Pg.758]    [Pg.71]    [Pg.927]    [Pg.308]    [Pg.560]    [Pg.564]    [Pg.535]    [Pg.297]    [Pg.487]    [Pg.237]    [Pg.256]    [Pg.70]    [Pg.70]    [Pg.114]    [Pg.119]    [Pg.24]    [Pg.221]    [Pg.234]    [Pg.383]   
See also in sourсe #XX -- [ Pg.494 ]




SEARCH



Aromatic sulfonation by sulfuric acid or oleum

Fuming sulfuric acid, with aromatic compounds

Sulfuric acid reaction with aromatic compounds

Sulfuric acid, reaction with aromatic aldehydes

Sulfuric acid, reaction with aromatic rings

© 2024 chempedia.info