Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur nickel catalyst

Inhibitor Mol. wt. Platinum catalyst Relative toxicity per g.-atom a X 10 of sulfur Nickel catalyst Relative toxicity per g.-atom a X lO" of sulfur ... [Pg.163]

The presence of sulfur, combined or elementary, has a great influence on the course of a reaction carried out over nickel catalysts. A reaction which either proceeds at a greater rate or more selectively over nickel catalysts in the presence of sulfur is said to be promoted and a reaction which is retarded or which proceeds less selectively is said to be poisoned. It is convenient to speak of these sulfurized nickel catalysts collectively as nickel sulfide catalysts. [Pg.329]

Methanation of the clean desulfurized main gas (less than 1 ppm total sulfur) is accompHshed in the presence of a nickel catalyst at temperatures from 260—400°C and pressure range of 2—2.8 MPa (300—400 psi). Equations and reaction enthalpies are given in Table 4. [Pg.70]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

Tetrahydronaphthalene is produced by the catalytic treatment of naphthalene with hydrogen. Various processes have been used, eg, vapor-phase reactions at 101.3 kPa (1 atm) as well as higher pressure Hquid-phase hydrogenation where the conditions are dependent upon the particular catalyst used. Nickel or modified nickel catalysts generally are used commercially however, they are sensitive to sulfur, and only naphthalene that has very low sulfur levels can be used. Thus many naphthalene producers purify their product to remove the thionaphthene, which is the principal sulfur compound present. Sodium treatment and catalytic hydrodesulfuri2ation processes have been used for the removal of sulfur from naphthalene the latter treatment is preferred because of the ha2ardous nature of sodium treatment. [Pg.483]

Uses. Nickel nitrate is an intermediate in the manufacture of nickel catalysts, especially those that are sensitive to sulfur and therefore preclude the use of the less expensive nickel sulfate. Nickel nitrate also is an intermediate in loading active mass in nickel—alkaline batteries of the sintered plate type (see Batteries, SECONDARY cells). Typically, hot nickel nitrate symp is impregnated in the porous sintered nickel positive plates. Subsequendy, the plates are soaked in potassium hydroxide solution, whereupon nickel hydroxide [12054-48-7] precipitates within the pores of the plate. [Pg.10]

Hydrogenation at lower temperature and ia the presence of catalysts yields organic sulfur compounds. With a reduced nickel catalyst at 180°C, methanedithiol [6725-64-0] is formed ... [Pg.28]

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]

Effect of Catalyst The catalysts used in hydrotreating are molybdena on alumina, cobalt molybdate on alumina, nickel molybdate on alumina or nickel tungstate. Which catalyst is used depends on the particular application. Cobalt molybdate catalyst is generally used when sulfur removal is the primary interest. The nickel catalysts find application in the treating of cracked stocks for olefin or aromatic saturation. One preferred application for molybdena catalyst is sweetening, (removal of mercaptans). The molybdena on alumina catalyst is also preferred for reducing the carbon residue of heating oils. [Pg.67]

Figure 8.3.1 is a typical process diagram for tlie production of ammonia by steam reforming. Tlie first step in tlie preparation of tlie synthesis gas is desulfurization of the hydrocarbon feed. Tliis is necessary because sulfur poisons tlie nickel catalyst (albeit reversibly) in tlie reformers, even at very low concentrations. Steam reforming of hydrocarbon feedstock is carried out in tlie priiiiiiry and secondary reformers. [Pg.260]

This solution Is heated to 65°C and barium hydroxide added in quantity sufficient to make the concentration of the barium hydroxide 0.2 mol/liter. The solution is agitated and maintained at 65°C for 6 hours after the addition of the barium hydroxide. It is then cooled and neutralized to a pH of 6.8 with sulfuric acid. The precipitated barium sulfate is filtered out. A quantity of activated supported nickel catalyst containing 5 g of nickel is added. [Pg.896]

The residual portion of feedstocks contains a large concentration of contaminants. The major contaminants, mostly organic in nature, include nickel, vanadium, nitrogen, and sulfur. Nickel, vanadium, and sodium are deposited quantitatively on the catalyst. This deposition poisons the catalyst permanently, accelerating production of coke and light gases. [Pg.325]

This paper surveys the field of methanation from fundamentals through commercial application. Thermodynamic data are used to predict the effects of temperature, pressure, number of equilibrium reaction stages, and feed composition on methane yield. Mechanisms and proposed kinetic equations are reviewed. These equations cannot prove any one mechanism however, they give insight on relative catalyst activity and rate-controlling steps. Derivation of kinetic equations from the temperature profile in an adiabatic flow system is illustrated. Various catalysts and their preparation are discussed. Nickel seems best nickel catalysts apparently have active sites with AF 3 kcal which accounts for observed poisoning by sulfur and steam. Carbon laydown is thermodynamically possible in a methanator, but it can be avoided kinetically by proper catalyst selection. Proposed commercial methanation systems are reviewed. [Pg.10]

Nickel. As a methanation catalyst, nickel is presently preeminent. It is relatively cheap, it is very active, and it is the most selective to methane of all the metals. Its main drawback is that it is easily poisoned by sulfur, a fault common to all the known active methanation catalysts. The nickel content of commercial nickel catalysts is 25-77 wt %. Nickel is dispersed on a high-surface-area, refractory support such as alumina or kieselguhr. Some supports inhibit the formation of carbon by Reaction 4. Chromia-supported nickel has been studied by Czechoslovakian and Russian investigators. [Pg.23]

Sulfur. It is not readily predictable from existing thermodynamic data that sulfur would be a poison of nickel catalysts. The action of sulfur is undoubtedly through the reaction of hydrogen sulfide with nickel, according to ... [Pg.25]

Hydrogen sulfide is present in the feed gas, or it can be formed by hydrogen reduction of any sulfur-bearing compound over the nickel catalyst. [Pg.25]

Catalyst Poisons. It is well known that sulfur, chlorine, etc. are strong poisons for nickel catalyst. Chlorine was not detectable in the synthesis gas downstream of the Rectisol in the SASOL plant. The total sulfur content of this gas—in the form of H2S, COS, and organic sulfur components—averaged 0.08 mg/m3 with maximum values of 0.2 mg total sulfur/m3. [Pg.128]

These tests demonstrated that the Lurgi Rectisol process provides an extremely pure synthesis gas which can be charged directly to the metha-nation plant without problems of sulfur poisoning of the nickel catalyst. However, in order to cope with a sudden sulfur breakthrough from Rectisol as a result of maloperation, a commercial methanation plant should be operated with a ZnO emergency catchpot on line. [Pg.129]

D. Newsome (Virginia Polytechnic Institute and State University) Almost all the talks today are concerned with nickel catalyst. Is there any place for a somewhat less active but sulfur-tolerant catalyst ... [Pg.171]

Nickel catalysts used in steam reforming are more resistant to deactivation by carbon deposition if the surface contains sulfur, or gold. Explain why these elements act as promoters. Would you prefer sulfur or gold as a promoter Explain your answer. [Pg.410]

A feasibility study on the application of H-NMR petroleum product characterization to predict physicochemical properties of feeds and catalyst-feed interactions has been performed. The technique satisfactorily estimates many feed properties as well as catalyst-feed interactions to forecast products yield. There are, however, limitations that have to be understood when using the H-NMR method. The technique, in general, is not capable either to estimate the level of certain contaminants such as nitrogen, sulfur, nickel, and vanadium when evaluating feed properties or the effect of these contaminants on products yields while testing catalyst-feed interactions. [Pg.197]

Reduction. Benzene can be reduced to cyclohexane [110-82-7], C5H12, or cycloolefins. At room temperature and ordinary pressure, benzene, either alone or in hydrocarbon solvents, is quantitatively reduced to cyclohexane with hydrogen and nickel or cobalt (14) catalysts. Catalytic vapor-phase hydrogenation of benzene is readily accomplished at about 200°C with nickel catalysts. Nickel or platinum catalysts are deactivated by the presence of sulfur-containing impurities in the benzene and these metals should only be used with thiophene-free benzene. Catalysts less active and less sensitive to sulfur, such as molybdenum oxide or sulfide, can be used when benzene is contaminated with sulfur-containing impurities. Benzene is reduced to 1,4-cydohexadiene [628-41-1], C6HS, with alkali metals in liquid ammonia solution in the presence of alcohols (15). [Pg.39]

In 1992, Crabtree and co-workers reported the first nickel catalyst effective for silane alcoholysis.161 The complex, [Ni(tss)]2 (tss = salicylaldehyde thiosemicarbazone), bears a ligand that contains O and N donor groups and a semicarbazide sulfur. Alcoholysis of Et3SiH with ethanol or methanol occurs at room temperature in 50% dimethyl sulfoxide-benzene. However, the reaction is inhibited in the presence of strong donor ligands, H2, or atmospheric pressure of CO. [Pg.249]


See other pages where Sulfur nickel catalyst is mentioned: [Pg.39]    [Pg.226]    [Pg.389]    [Pg.93]    [Pg.8]    [Pg.86]    [Pg.119]    [Pg.172]    [Pg.81]    [Pg.160]    [Pg.208]    [Pg.344]    [Pg.95]    [Pg.158]    [Pg.140]    [Pg.22]    [Pg.183]    [Pg.144]    [Pg.388]    [Pg.106]    [Pg.120]    [Pg.93]    [Pg.389]    [Pg.220]    [Pg.202]   
See also in sourсe #XX -- [ Pg.173 , Pg.174 , Pg.175 , Pg.176 , Pg.177 , Pg.178 , Pg.179 , Pg.180 , Pg.181 , Pg.182 , Pg.183 , Pg.184 ]




SEARCH



Catalyst sulfur

Nickel catalysts adsorbed sulfur

Nickel catalysts carbon-sulfur bond formation

Nickel catalysts sulfur addition

Nickel catalysts sulfur adsorption

Nickel catalysts sulfur poisoning

Sulfur nickel

© 2024 chempedia.info