Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur hydrodesulfurization

Trickle-bed reactors are used in catalytic hydrotreating (reaction with H2) of petroleum fractions to remove sulfur (hydrodesulfurization), nitrogen (hydrodenitrogena-tion), and metals (hydrodemetallization), as well as in catalytic hydrocracking of petroleum fractions, and other catalytic hydrogenation and oxidation processes. An example of the first is the reaction in which a sulfur compound is represented by diben-zothiophene (Ring and Missen, 1989), and a molybdate catalyst, based, for example, on cobalt molybdate, is used ... [Pg.619]

Crude oil is a mixture of hydrocarbons, clay, water, and sulfur. Some crude mixtures have higher concentrations of sulfur than others these mixtures are referred to as sour feed. Hydrodesulfurization (Figure 11-10) is a process used by industrial manufacturers to "sweeten" or remove the sulfur. Hydrodesulfurization units use the following equipment during operation ... [Pg.258]

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

The composition of a reforming catalyst is dictated by the composition of the feedstock and the desired reformate. The catalysts used are principally platinum or platinum—rhenium on an alumina base. The purpose of platinum on the catalyst is to promote dehydrogenation and hydrogenation reactions. Nonplatinum catalysts are used in regenerative processes for feedstocks containing sulfur, although pretreatment (hydrodesulfurization) may permit platinum catalysts to be employed. [Pg.207]

Sulfur, another inorganic petrochemical, is obtained by the oxidation of hydrogen sulfide 2H2S + O2 — 2H2 0 + 2S. Hydrogen sulfide is a constituent of natural gas and also of the majority of refinery gas streams, especially those off-gases from hydrodesulfurization processes. A majority of the sulfur is converted to sulfuric acid for the manufacture of fertilizers and other chemicals. Other uses for sulfur include the production of carbon disulfide, refined sulfur, and pulp and paper industry chemicals. [Pg.216]

Naphthalene sodium prepared in dimethyl ether or another appropriate solvent, or metallic sodium dissolved in Hquid ammonia or dimethyl sulfoxide, is used to treat polyfluorocarbon and other resins to promote adhesion (138—140). Sodium, usually in dispersed form, is used to desulfurize a variety of hydrocarbon stocks (141). The process is most useful for removal of small amounts of sulfur remaining after hydrodesulfurization. [Pg.169]

Rigorous hydrogenating conditions, particularly with Raney Nickel, remove the sulfur atom of thiophenes. With vapor-phase catalysis, hydrodesulfurization is the technique used to remove sulfur materials from cmde oil. Chemically hydrodesulfurization can be a valuable route to alkanes otherwise difficult to access. [Pg.20]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

Aj Hydrodesulfurization Removal of sulfur compounds from crude oil by reaction with hydrogen on CO - Mo on alumina. [Pg.243]

Although desulfurization is a process, which has been in use in the oil industry for many years, renewed research has recently been started, aimed at improving the efficiency of the process. Envii onmental pressure and legislation to further reduce Sulfur levels in the various fuels has forced process development to place an increased emphasis on hydrodesulfurization (HDS). For a clear comprehension of the process kinetics involved in HDS, a detailed analyses of all the organosulfur compounds clarifying the desulfurization chemistry is a prerequisite. The reactivities of the Sulfur-containing structures present in middle distillates decrease sharply in the sequence thiols sulfides thiophenes benzothiophenes dibenzothio-phenes (32). However, in addition, within the various families the reactivities of the Substituted species are different. [Pg.396]

It should be noted, however, that this reaction sequence may be different from what may actually be occurring in the reactor. The reactions proceed at different rates depending on the process variables. Hydrodesulfurization of complex sulfur compounds such as dibenzothiophene also occurs under these conditions. The desulfurized product may crack to give two benzene molecules ... [Pg.81]

Products from hydrodesulfurization of feeds with different sulfur levels ... [Pg.83]

Catalysts used in hydrotreatment (hydrodesulfurization, HDS) processes are the same as those developed in Germany for coal hydrogenation during World War II. The catalysts should be sulfur-resistant. The cobalt-molybdenum system supported on alumina was found to be an effective catalyst. [Pg.84]

Reactions occurring in hydrotreatment units are mainly hydrodesulfurization and hydrodenitrogenation of sulfur and nitrogen compounds. In... [Pg.84]

Although desulfurization is not the goal of cat cracking operations, approximately 50% of sulfur in the feed is converted to HjS. in addition, the remaining sulfur compounds in the FCC products are lighter and can be desulfurized by low-pressure hydrodesulfurization processing. [Pg.58]

Thiophenes continue to play a major role in commercial applications as well as basic research. In addition to its aromatic properties that make it a useful replacement for benzene in small molecule syntheses, thiophene is a key element in superconductors, photochemical switches and polymers. The presence of sulfur-containing components (especially thiophene and benzothiophene) in crude petroleum requires development of new catalysts to promote their removal (hydrodesulfurization, HDS) at refineries. Interspersed with these commercial applications, basic research on thiophene has continued to study its role in electrocyclic reactions, newer routes for its formation and substitution and new derivatives of therapeutic potential. New reports of selenophenes and tellurophenes continue to be modest in number. [Pg.77]

Figure 9.6. Schematic representation of the catalytic cycle for the hydrodesulfurization of a sulfur-containing hydrocarbon (ethane thiol) by a sulfur vacancy on M0S2 The C2H5SH molecule adsorbs with its sulfur atom towards... Figure 9.6. Schematic representation of the catalytic cycle for the hydrodesulfurization of a sulfur-containing hydrocarbon (ethane thiol) by a sulfur vacancy on M0S2 The C2H5SH molecule adsorbs with its sulfur atom towards...
Figure 9.8. Global reaction mechanism for the hydrodesulfurization of thiophene, in which the first step involves hydrogenation of the unsaturated ring, followed by cleavage ofthe C-S bond in two steps. Butadiene is assumed to be the first sulfur-free product,... Figure 9.8. Global reaction mechanism for the hydrodesulfurization of thiophene, in which the first step involves hydrogenation of the unsaturated ring, followed by cleavage ofthe C-S bond in two steps. Butadiene is assumed to be the first sulfur-free product,...
Hydrodesulfurization (HDS) is a very important large-scale process used in refineries to remove sulfur from oil products. It is actually one of the largest catalytic processes. As a model system for this process we shall consider the HDS of thio-... [Pg.419]


See other pages where Sulfur hydrodesulfurization is mentioned: [Pg.182]    [Pg.109]    [Pg.651]    [Pg.1]    [Pg.171]    [Pg.1383]    [Pg.1415]    [Pg.182]    [Pg.109]    [Pg.651]    [Pg.1]    [Pg.171]    [Pg.1383]    [Pg.1415]    [Pg.76]    [Pg.477]    [Pg.477]    [Pg.518]    [Pg.526]    [Pg.527]    [Pg.135]    [Pg.361]    [Pg.497]    [Pg.214]    [Pg.2]    [Pg.62]    [Pg.66]    [Pg.69]    [Pg.292]    [Pg.985]    [Pg.85]    [Pg.99]    [Pg.113]    [Pg.198]    [Pg.78]    [Pg.146]    [Pg.155]    [Pg.357]   
See also in sourсe #XX -- [ Pg.162 , Pg.163 ]




SEARCH



Hydrodesulfuration

Hydrodesulfurization

Hydrodesulfurization sulfur compounds

Hydrodesulfurizer

Polyaromatic sulfur compounds, hydrodesulfurization

Sulfur removal Hydrodesulfurization

© 2024 chempedia.info