Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure hydrodesulfurization

Although desulfurization is not the goal of cat cracking operations, approximately 50% of sulfur in the feed is converted to HjS. in addition, the remaining sulfur compounds in the FCC products are lighter and can be desulfurized by low-pressure hydrodesulfurization processing. [Pg.58]

The EPA s revised pollution guidelines for on-highway diesel fuels took effect on October 1, 1993, and additional Clean Air Act amendments are pending. As a result, the sulfur content of diesel fuel will have to be reduced from 1 to 2% down to 0.05% as compared with 0.3% conventionally attainable with high-pressure hydrodesulfurization. [Pg.916]

Simple conventional refining is based essentially on atmospheric distillation. The residue from the distillation constitutes heavy fuel, the quantity and qualities of which are mainly determined by the crude feedstock available without many ways to improve it. Manufacture of products like asphalt and lubricant bases requires supplementary operations, in particular separation operations and is possible only with a relatively narrow selection of crudes (crudes for lube oils, crudes for asphalts). The distillates are not normally directly usable processing must be done to improve them, either mild treatment such as hydrodesulfurization of middle distillates at low pressure, or deep treatment usually with partial conversion such as catalytic reforming. The conventional refinery thereby has rather limited flexibility and makes products the quality of which is closely linked to the nature of the crude oil used. [Pg.484]

Fig. 14. ICI—LCA process flow sheet PAC, purified air compressor HDS, hydrodesulfurization IP, iatermediate pressure LP, Hquefied petroleum BFW,... Fig. 14. ICI—LCA process flow sheet PAC, purified air compressor HDS, hydrodesulfurization IP, iatermediate pressure LP, Hquefied petroleum BFW,...
A hst of 74 GLS reacdions with hterature references has been compiled by Shah Gas-Liquid-Solid Reactions, McGraw-HiU, 1979), classified into groups where the solid is a reactant, or a catalyst, or inert. A hst of 75 reactions made by Ramachandran and Chaudhari (Three-Phase Chemical Reactors, Gordon and Breach, 1983) identifies reactor types, catalysts, temperature, and pressure. They classify the processes according to hydrogenation of fatty oils, hydrodesulfurization, Fischer-Tropsch reactions, and miscellaneous hydrogenations and oxidations. [Pg.2118]

Trickle Bed Hydrodesulfurization The first large-scale apph-cation of trickle bed reactors was to the hydrodesulfurization of petroleum oils in 1955. The temperature is elevated to enhance the specific-rate and the pressure is elevated to improve the solubihty of the... [Pg.2119]

Although desulfurization is a process, which has been in use in the oil industry for many years, renewed research has recently been started, aimed at improving the efficiency of the process. Envii onmental pressure and legislation to further reduce Sulfur levels in the various fuels has forced process development to place an increased emphasis on hydrodesulfurization (HDS). For a clear comprehension of the process kinetics involved in HDS, a detailed analyses of all the organosulfur compounds clarifying the desulfurization chemistry is a prerequisite. The reactivities of the Sulfur-containing structures present in middle distillates decrease sharply in the sequence thiols sulfides thiophenes benzothiophenes dibenzothio-phenes (32). However, in addition, within the various families the reactivities of the Substituted species are different. [Pg.396]

In the two-stage operation, the feed is hydrodesulfurized in the first reactor with partial hydrocracking. Reactor effluent goes to a high-pressure separator to separate the hydrogen-rich gas, which is recycled and mixed with the fresh feed. The liquid portion from the separator is fractionated, and the bottoms of the fractionator are sent to the second stage reactor. [Pg.81]

Figure 7.16. Dependence of the rate of thiophene hydrodesulfurization on the partial pressures of the reactants thiophene and hydrogen and of the product hydrogen sulfide,... Figure 7.16. Dependence of the rate of thiophene hydrodesulfurization on the partial pressures of the reactants thiophene and hydrogen and of the product hydrogen sulfide,...
Figure 7.18. Dependence of the rate of thiophene hydrodesulfurization on the partial pressures of thiophene at different temperatures, along with fits according to the Langmuir-Hinshelwood model, Eq. (32). [Fron A. Borgna and J.W. Niemantsverdriet, to be published (2003).]... Figure 7.18. Dependence of the rate of thiophene hydrodesulfurization on the partial pressures of thiophene at different temperatures, along with fits according to the Langmuir-Hinshelwood model, Eq. (32). [Fron A. Borgna and J.W. Niemantsverdriet, to be published (2003).]...
The apparatuses used for the studies of both ammonia synthesis emd hydrodesulfurization were almost identical, consisting of a UHV chamber pumped by both ion and oil diffusion pumps to base pressures of 1 x10 " Torr. Each chamber was equipped with Low Energy Electron Diffraction optics used to determine the orientation of the surfaces and to ascertain that the surfaces were indeed well-ordered. The LEED optics doubled as retarding field analyzers used for Auger Electron Spectroscopy. In addition, each chamber was equipped with a UTI 100C quadrupole mass spectrometer used for analysis of background gases and for Thermal Desorption Spectroscopy studies. [Pg.155]

Kinetics over the Mo(lOO) Crystal Surface. We have studied the hydrodesulfurization of thiophene over the initially clean Mo(lOO) single crystal surface in the temperature range 520K - 690K and at reactant pressures of 100 Torr < P(H ) 800 Torr and 0.1 Torr P(Th) < 10 Torr. Under these conditions the reaction is catalyzed at a constant rate for a period of approximately one hour after which the rate begins to decrease with time. The rates reported here are all initial rates of reaction calculated from data collected in the period over which they remain constant. [Pg.158]

The studies of ammonia synthesis over Fe and Re and the hydrodesulfurization of thiophene over Mo, described above, illustrate the importance and success of our approach of studying catalysis over single crystal samples at high pressures. The use of surfaces having a variety of orientations allows the study of reactions that are surface structure sensitive 6Uid provides insight into the nature of the catalytic site. Here we have shown that the ammonia synthesis... [Pg.162]

One of the major challenges in the petroleum industry today is the removal of sulfur compounds, especially refractive ones such as 4,6-dimethyldibenzo-thiophene (DMDBT), from petroleum fractions such as diesel to concentrations <5-10 ppm from the current values of 50-500 ppm. The current technology is hydrodesulfurization catalyzed by cobalt-nickel-molybdenum sulfides at high pressures. Reducing sulfur concentratios in diesel fuels below 5-10 ppm... [Pg.120]

Hydrodesulfurization (HDS) process operates at a pressure highly exceeding the pressure of natural gas available in the existing infrastructure. [Pg.203]

A typical commercial hydrodesulfurization catalyst might contain 14% Mo03 and 3% CoO, on an alumina support. The oxides are converted to Co-doped MoS2 by exposure to H2S/H2 under carefully controlled conditions of temperature and partial pressures. [Pg.122]

Unwanted sulfur-containing components may be removed from petroleum oils by hydrodesulfurization over a Co-Mo catalyst at high temperatures under pressure ( unifining or hydrofining ).38 However, benzo[6]thiophene is hydrodesulfurized with difficulty over a molybdenum catalyst89 40 and it is difficult to remove completely from petroleum oils by hydrofining.41... [Pg.182]

Under the usual commercial hydrodesulfurization conditions (elevated temperatures and pressures, high hydrogen-to-feedstock ratios, and the presence of a catalyst), the various reactions that result in the removal of sulfur from the organic feedstock (Table 4-3) occur. Thus, thiols as well as open chain and cyclic sulfides are converted to saturated and/or aromatic compounds depending, of course, on the nature of the particular sulfur compound involved. Benzothio-phenes are converted to alkyl aromatics, while dibenzothiophenes are usually converted to biphenyl derivatives. In fact, the major reactions that occur as part of the hydrodesulfurization process involve carbon-sulfur bond rupture and saturation of the reactive fragments (as well as saturation of olefins). [Pg.166]

The wide ranges of temperature and pressure employed for the hydrodesulfurization process virtually dictate that many other reactions will proceed concurrently with the desulfurization reaction. Thus, the isomerization of paraffins and naphthenes may occur and hydrocracking will increase as the temperature and pressure increase. Furthermore, at the higher temperatures (but low pressures) naphthenes may dehydrogenate to aromatics and paraffins dehydrocyclize to naphthenes, while at lower temperature (high pressures) some of the aromatics may be hydrogenated. [Pg.167]


See other pages where Pressure hydrodesulfurization is mentioned: [Pg.111]    [Pg.111]    [Pg.89]    [Pg.525]    [Pg.526]    [Pg.526]    [Pg.214]    [Pg.69]    [Pg.985]    [Pg.84]    [Pg.146]    [Pg.154]    [Pg.155]    [Pg.74]    [Pg.382]    [Pg.285]    [Pg.518]    [Pg.137]    [Pg.218]    [Pg.130]    [Pg.59]    [Pg.265]    [Pg.136]    [Pg.152]   


SEARCH



High-pressure hydrodesulfurization

High-pressure hydrodesulfurization process

Hydrodesulfuration

Hydrodesulfurization

Hydrodesulfurizer

© 2024 chempedia.info