Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur hydrate

Tertiary butyl alcohol ( /i° 0.7S56(5>, bpt 013 = 8Z5°Q can be produced by the hydration of isobutene either by dilute sulfuric add (50 to 65 per cent weight) or in the presence of acidic ion exchange resins. Apart from the Shell facility in the United States, which employs sulfuric hydration, no industrial plant of a significant size using this technique exists today. [Pg.89]

Table 10.9 lists the main economic data available on the production of methyl ethyl ketone from n-butenes, in two steps involving the intermediate formation of secondary butyl alcohol by sulfuric hydration followed by dehydrogenation, or directly by the Wacker/Hoechst technology. [Pg.138]

Sulfur hydrate, H2SO total energy, au binding energy, eV dipole moment, D charge on H atom charge on S atom charge on 0 atom... [Pg.26]

The main justification for diesel fuel desulfurization is related to particulate emissions which are subject to very strict rules. Part of the sulfur is transformed first into SO3, then into hydrated sulfuric acid on the filter designed to collect the particulates. Figure 5.21 gives an estimate of the variation of the particulate weights as a function of sulfur content of diesel fuel for heavy vehicles. The effect is greater when the test cycle contains more high temperature operating phases which favor the transformation of SO2 to SO3. This is particularly noticeable in the standard cycle used in Europe (ECE R49). [Pg.254]

The thiazolyl-2-thioglycollic acid (119) undergoes intramolecular ring closure to give mesoionic compound 120 under treatment with acetic anhydride and triethylamine (Scheme 60) (192). The parent acid (119) can be recovered from 120 by hydration with hot 50% aqueous sulfuric add. Compound 120 affords monohydrate of bis(-cyclopentenothiazolyi-2-thio)acetone (121) (192). [Pg.407]

Hydration of alkenes by this method however is limited to monosubstituted alkenes and disubstituted alkenes of the type RCH=CHR Disubstituted alkenes of the type R2C=CH2 along with trisubstituted and tetrasubstituted alkenes do not form alkyl hydrogen sulfates under these conditions but instead react m a more complicated way with concentrated sulfuric acid (to be discussed m Section 6 21)... [Pg.247]

Although 2 methylpropene undergoes acid catalyzed hydration m dilute sulfuric acid to form tert butyl alcohol (Section 6 10) a different reaction occurs m more concentrated solutions of sulfuric acid Rather than form the expected alkyl hydrogen sulfate (see Sec tion 6 9) 2 methylpropene is converted to a mixture of two isomeric C Hig alkenes... [Pg.266]

In general ketones are more stable than their enol precursors and are the products actually isolated when alkynes undergo acid catalyzed hydration The standard method for alkyne hydration employs aqueous sulfuric acid as the reaction medium and mer cury(II) sulfate or mercury(II) oxide as a catalyst... [Pg.380]

Mercury(II) oxide Chlorine, hydrazine hydrate, hydrogen peroxide, hypophosphorous acid, magnesium, phosphorus, sulfur, butadiene, hydrocarbons, methanethiol... [Pg.1209]

From Acetylene. Although acetaldehyde has been produced commercially by the hydration of acetylene since 1916, this procedure has been almost completely replaced by the direct oxidation of ethylene. In the hydration process, high purity acetylene under a pressure of 103.4 kPa (15 psi) is passed into a vertical reactor containing a mercury catalyst dissolved in 18—25% sulfuric acid at 70—90°C (see Acetylene-DERIVED chemicals). [Pg.52]

The longer perfluoroalkanesulfonic acids are hydroscopic oily Hquids. Distillation of the acid from a mixture of its salt and sulfuric acid gives a hydrated mixture with melting points above 100°C. These acids show the same general solubiUties as trifluoromethanesulfonic acid, but are insoluble in ben2ene, heptane, carbon tetrachloride, and perfluorinated Hquids. AH of the higher perfluoroalkanesulfonic acids have been prepared by electrochemical fluorination (20). [Pg.315]

Arsenious oxide, trivalent antimony (73), sulfurous acid (74), hydrogen sulfide (75), stannous ion, and thiocianate (76) have been recommended for the titration of iodine. However, none of these appears to have a greater sensitivity for the deterrnination of minute quantities of iodine than thiosulfate. Organic compounds such as formaldehyde (77), chloral hydrate (78), aldoses (79), acetone (70,80), and hydroquinone have also been suggested for this purpose. [Pg.364]

Iron Sulfur Compounds. Many molecular compounds (18—20) are known in which iron is tetrahedraHy coordinated by a combination of thiolate and sulfide donors. Of the 10 or more stmcturaHy characterized classes of Fe—S compounds, the four shown in Figure 1 are known to occur in proteins. The mononuclear iron site REPLACE occurs in the one-iron bacterial electron-transfer protein mbredoxin. The [2Fe—2S] (10) and [4Fe—4S] (12) cubane stmctures are found in the 2-, 4-, and 8-iron ferredoxins, which are also electron-transfer proteins. The [3Fe—4S] voided cubane stmcture (11) has been found in some ferredoxins and in the inactive form of aconitase, the enzyme which catalyzes the stereospecific hydration—rehydration of citrate to isocitrate in the Krebs cycle. In addition, enzymes are known that contain either other types of iron sulfur clusters or iron sulfur clusters that include other metals. Examples include nitrogenase, which reduces N2 to NH at a MoFe Sg homocitrate cluster carbon monoxide dehydrogenase, which assembles acetyl-coenzyme A (acetyl-CoA) at a FeNiS site and hydrogenases, which catalyze the reversible reduction of protons to hydrogen gas. [Pg.442]

Miscellaneous. Both whiting and hydrated lime are used as diluents and carriers of pesticides, such as lime—sulfur sprays, Bordeaux, calcium arsenate, etc. The most widely used bleach and sterilizer, high test calcium hypochlorite, is made by interacting lime and chlorine (see Bleaching AGENTS). Calcium and magnesium salts, such as dicalcium phosphate, magnesium chloride, lithium salts, etc, are made directly from calcific and dolomitic lime and limestone. [Pg.178]

A diagram for one implementation of this process (61,62) is shown in Eigure 11. Recovered potassium sulfate is converted to potassium formate [590-29 ] by reaction with calcium formate [544-17-2] which is made by reacting hydrated lime, Ca(OH)2, and carbon monoxide. The potassium formate (mp 167°C), in hquid form, is recycled to the combustor at about 170°C. Sulfur is removed as soHd calcium sulfate by filtration and then disposed of (see... [Pg.423]

The Mn ion is so unstable that it scarcely exists in aqueous solution. In acidic aqueous solution, manganic compounds readily disproportionate to form Mn ions and hydrated manganese(IV) oxide, Mn02 2H20 in basic solution these compounds hydroly2e to hydrous manganese(III) oxide, MnO(OH). Sulfuric acid concentrations of about 400 450 g/L are required to stabilize the noncomplexed Mn ion in aqueous solutions. [Pg.506]

Niobic Acid. Niobic acid, Nb20 XH2O, includes all hydrated forms of niobium pentoxide, where the degree of hydration depends on the method of preparation, age, etc. It is a white insoluble precipitate formed by acid hydrolysis of niobates that are prepared by alkaH pyrosulfate, carbonate, or hydroxide fusion base hydrolysis of niobium fluoride solutions or aqueous hydrolysis of chlorides or bromides. When it is formed in the presence of tannin, a volurninous red complex forms. Freshly precipitated niobic acid usually is coUoidal and is peptized by water washing, thus it is difficult to free from traces of electrolyte. Its properties vary with age and reactivity is noticeably diminished on standing for even a few days. It is soluble in concentrated hydrochloric and sulfuric acids but is reprecipitated on dilution and boiling and can be complexed when it is freshly made with oxaHc or tartaric acid. It is soluble in hydrofluoric acid of any concentration. [Pg.28]

The concentrated mother Hquor contains a large amount of sulfuric acid in a free form, as titanium oxy-sulfate, and as some metal impurity sulfates. To yield the purest form of hydrated TiOg, the hydrolysis is carried out by a dding crystallizing seeds to the filtrate and heating the mixture close to its boiling temperature, - 109° C. The crystal stmcture of the seeds (anatase or mtile) and their physical properties affect the pigmentary characteristics of the final product. [Pg.8]

Amino-4-nitrophenol. This derivative, 2-hydroxy-5-nitroani1ine (9), forms orange prisms from water. These prisms are hydrated with one water of crystallization, mp 80—90°C, and can be dehydrated over sulfuric acid to the anhydrous form, mp 143 —145°C. The compound is soluble in ethanol, diethyl ether, acetic acid, and warm benzene and slightly soluble in water. [Pg.313]

The indirect hydration, also called the sulfuric acid process, practiced by the three U.S. domestic producers, was the only process used worldwide until ICI started up the first commercial direct hydration process in 1951. Both processes use propylene and water as raw materials. Early problems of high corrosion, high energy costs, and air pollution using the indirect process led to the development of the direct hydration process in Europe. However, a high purity propylene feedstock is required. In the indirect hydration process, C -feedstock streams from refinery off-gases containing only 40—60 wt % propylene are often used in the United States. [Pg.107]

Indirect Hydration. Indirect hydration is based on a two-step reaction of propylene and sulfuric acid. In the first step, mixed sulfate esters, primarily isopropyl hydrogen sulfate, but also diisopropyl sulfate, form. These are then hydrolyzed, forming the alcohol and sulfuric acid. [Pg.107]

Process. A typical indirect hydration process is presented in Eigure 1. In the process, propylene reacts with sulfuric acid (>60 wt%) in agitated reactors or absorbers at moderate (0.7—2.8 MPa (100—400 psig)) pressure. The isopropyl sulfate esters form and are maintained in the Hquid state at 20—80°C. Low propylene concentrations, ie, 50 wt %, can be tolerated, but concentrations of 65 wt % or higher are preferred to achieve high alcohol yields. Because the reaction is exothermic, internal cooling coils or external heat exchangers are used to control the temperature. [Pg.107]

Isopropyl Alcohol. Propylene may be easily hydrolyzed to isopropyl alcohol. Eady commercial processes involved the use of sulfuric acid in an indirect process (100). The disadvantage was the need to reconcentrate the sulfuric acid after hydrolysis. Direct catalytic hydration of propylene to 2-propanol followed commercialization of the sulfuric acid process and eliniinated the need for acid reconcentration, thus reducing corrosion problems, energy use, and air pollution by SO2 and organic sulfur compounds. Gas-phase hydration takes place over supported oxides of tungsten at 540 K and 25... [Pg.129]

Physical Properties. Sodium metabisulfite (sodium pyrosulfite, sodium bisulfite (a misnomer)), Na2S20, is a white granular or powdered salt (specific gravity 1.48) and is storable when kept dry and protected from air. In the presence of traces of water it develops an odor of sulfur dioxide and in moist air it decomposes with loss of part of its SO2 content and by oxidation to sodium sulfate. Dry sodium metabisulfite is more stable to oxidation than dry sodium sulfite. At low temperatures, sodium metabisulfite forms hydrates with 6 and 7 moles of water. The solubiHty of sodium metabisulfite in water is 39.5 wt % at 20°C, 41.6 wt % at 40°C, and 44.6 wt % at 60°C (340). Sodium metabisulfite is fairly soluble in glycerol and slightly soluble in alcohol. [Pg.149]

Gas leaving the economizer flows to a packed tower where SO is absorbed. Most plants do not produce oleum and need only one tower. Concentrated sulfuric acid circulates in the tower and cools the gas to about the acid inlet temperature. The typical acid inlet temperature for 98.5% sulfuric acid absorption towers is 70—80°C. The 98.5% sulfuric acid exits the absorption tower at 100—125°C, depending on acid circulation rate. Acid temperature rise within the tower comes from the heat of hydration of sulfur trioxide and sensible heat of the process gas. The hot product acid leaving the tower is cooled in heat exchangers before being recirculated or pumped into storage tanks. [Pg.185]


See other pages where Sulfur hydrate is mentioned: [Pg.132]    [Pg.209]    [Pg.20]    [Pg.132]    [Pg.209]    [Pg.20]    [Pg.734]    [Pg.134]    [Pg.181]    [Pg.31]    [Pg.564]    [Pg.358]    [Pg.433]    [Pg.438]    [Pg.178]    [Pg.222]    [Pg.317]    [Pg.356]    [Pg.357]    [Pg.221]    [Pg.107]    [Pg.111]    [Pg.210]    [Pg.230]    [Pg.110]    [Pg.144]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Ethylene hydration with sulfuric acid

Hydration of sulfuric acid

Sulfur dioxide clathrate hydrate

Sulfuric acid hydrates

Sulfuric acid hydration of alkenes

Sulfuric acid sulfur trioxide hydration

Sulfuric acid, hydrated

Sulfuric acid.mono-hydrate

© 2024 chempedia.info