Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dioxide study

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

A smaller factor in ozone depletion is the rising levels of N2O in the atmosphere from combustion and the use of nitrogen-rich fertilizers, since they ate the sources of NO in the stratosphere that can destroy ozone catalyticaHy. Another concern in the depletion of ozone layer, under study by the National Aeronautics and Space Administration (NASA), is a proposed fleet of supersonic aircraft that can inject additional nitrogen oxides, as weU as sulfur dioxide and moisture, into the stratosphere via their exhaust gases (155). Although sulfate aerosols can suppress the amount of nitrogen oxides in the stratosphere... [Pg.503]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

A basic research study on combustion of sulfur led to the postulation that sulfur trioxide may actually be the primary combustion product and that sulfur dioxide may then be produced by the further reaction of sulfur trioxide with sulfur vapor ki the oxygen-deficient region of the flame (261). [Pg.146]

Municipal incinerators are often targeted as a primary cause of acid rain. In fact, power plants burning fossil fuels, which produce sulfur dioxide and nitrogen oxide, are actually the leading cause of acid rain, along with automotive exhaust (176,177). In Europe and Japan, studies show that only about 0.02% of all acid rain can be traced to incineration of PVC (178). [Pg.509]

A variety of models have been developed to study acid deposition. Sulfuric acid is formed relatively slowly in the atmosphere, so its concentrations are beUeved to be more uniform than o2one, especially in and around cities. Also, the impacts are viewed as more regional in nature. This allows an even coarser hori2ontal resolution, on the order of 80 to 100 km, to be used in acid deposition models. Atmospheric models of acid deposition have been used to determine where reductions in sulfur dioxide emissions would be most effective. Many of the ecosystems that are most sensitive to damage from acid deposition are located in the northeastern United States and southeastern Canada. Early acid deposition models helped to estabUsh that sulfuric acid and its precursors are transported over long distances, eg, from the Ohio River Valley to New England (86—88). Models have also been used to show that sulfuric acid deposition is nearly linear in response to changing levels of emissions of sulfur dioxide (89). [Pg.386]

Reproducible measurements of absolute activity for sulfur dioxide oxidation catalysts are very difficult to obtain for a number of reasons, including the fact that the reaction is extremely fast. In addition, there are differences in techniques and reporting methods used by the various workers. Pulse microreactors have been used to study quantities of these catalysts as small as 500 mg (83). [Pg.203]

Sufficient evidence is available to indicate that atmospheric pollution in vaiying degrees does affect health adversely. [Amdur, Melvin, and Drinker, Effec t of Inhalation of Sulfur Dioxide by Man, Lancet, 2, 758 (1953) Barton, Corn, Gee, VassaUo, and Thomas, Response of Healthy Men to Inhaled Low Concentrations of Gas-Aerosol Mixtures, Arch. Lnviron. Health, 18, 681 (1969) Bates, Bell, Burnham, Hazucha, and Mantha, Problems in Studies of Human Exposure to Air Pollutants, Can. Med. A.s.soc. J., 103, 833 (1970) Ciocco and... [Pg.2178]

Exposure to sulfur dioxide in the ambient air has been associated with reduced lung function, increased incidence of respiratory symptoms and diseases, irritation of the eyes, nose, and throat, and premature mortality. Children, the elderly, and those already suffering from respiratory ailments, such as asthmatics, are especially at risk. Health impacts appear to be linked especially to brief exposures to ambient concentrations above 1,000 ixg/in (acute exposures measured over 10 minutes). Some epidemiologic studies, however, have shown an association between relatively low annual mean levels and excess mortality. It is not clear whether long-... [Pg.38]

From the results of other authors should be mentioned the observation of a similar effect, e.g. in the oxidation of olefins on nickel oxide (118), where the retardation of the reaction of 1-butene by cis-2-butene was greater than the effect of 1-butene on the reaction of m-2-butene the ratio of the adsorption coefficients Kcia h/Kwas 1.45. In a study on hydrogenation over C03O4 it was reported (109) that the reactivities of ethylene and propylene were nearly the same (1.17 in favor of propylene), when measured separately, whereas the ratio of adsorption coefficients was 8.4 in favor of ethylene. This led in the competitive arrangement to preferential hydrogenation of ethylene. A similar phenomenon occurs in the catalytic reduction of nitric oxide and sulfur dioxide by carbon monoxide (120a). [Pg.43]

Intramolecular cyclization of sulfonyl radicals is almost absent from literature. The fact that free radical cyclization has been the subject of a large number of studies and applications in the last decade in organic chemistry48 and that sulfonyl radicals add quickly to multiple bonds (vide infra) makes cyclization of sulfonyl radicals a rather attractive area. Recently, Johnson and Derenne49 studied the reaction of 6-methylhept-5-en-2-ylcobaloxime(III) with sulfur dioxide and, based on the product analysis, they suggested reaction 15 to be an intermediate step. [Pg.1099]

Cationic copolymerization of sulfur dioxide and propylene oxide was studied and the product was identified as polysulfite ethers180,2S3 ... [Pg.21]

About half the manmade emissions of sulfur dioxide become sulfate aerosol. That implies that currently 35 Tg per year of sulfur in sulfur dioxide is converted chemically to sulfate. Because the molecular weight of sulfate is three times that of elemental sulfur, Q is about 105 Tg per year. Studies of sulfate in acid rain have shown that sulfates persist in the air for about five days, or 0.014 year. The area of the Earth is 5.1 x lO m. Substituting these values into the equation for B yields about 2.8 X 10 g/m for the burden. [Pg.449]

It has been shown in these studies that the principal, and probably only significant source of NDMA, is malt which had been dried by direct-fired drying (21, 73). It is well known that malts kilned by indirect firing have either low or non-detectable levels of NDMA (74). Consequently, changes in malting procedures have been implemented in both the U.S. and Canada which have resulted in marked reductions in N-nitrosamine levels in both malts and beer (70,74). For example, sulfur dioxide or products of sulfur combustion are now used routinely by all maltsters in the U.S. to minimize N-nitrosamine formation (70). The Canadian malting industry, on the other hand, has... [Pg.172]

In the wine industry, FTIR has become a useful technique for rapid analysis of industrial-grade glycerol adulteration, polymeric mannose, organic acids, and varietal authenticity. Urbano Cuadrado et al. (2005) studied the applicability of spectroscopic techniques in the near- and mid-infrared frequencies to determine multiple wine parameters alcoholic degree, volumic mass, total acidity, total polyphenol index, glycerol, and total sulfur dioxide in a much more efficient approach than standard and reference methods in terms of time, reagent, and operation errors. [Pg.497]


See other pages where Sulfur dioxide study is mentioned: [Pg.77]    [Pg.475]    [Pg.443]    [Pg.368]    [Pg.144]    [Pg.147]    [Pg.193]    [Pg.509]    [Pg.201]    [Pg.493]    [Pg.540]    [Pg.2178]    [Pg.282]    [Pg.29]    [Pg.30]    [Pg.39]    [Pg.276]    [Pg.54]    [Pg.602]    [Pg.198]    [Pg.82]    [Pg.442]    [Pg.691]    [Pg.694]    [Pg.916]    [Pg.1070]    [Pg.1097]    [Pg.1098]    [Pg.429]    [Pg.449]    [Pg.71]    [Pg.82]    [Pg.399]   
See also in sourсe #XX -- [ Pg.362 ]




SEARCH



© 2024 chempedia.info