Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dioxide preparation

Another class of chain scission positive resists is the poly(olefin-sulfones). These materials are alternating copolymers of an olefin and sulfur dioxide, prepared by free radical solution polymerization. The relatively weak C-S bond, 60 kcal/mole compared with 80 kcal/mole for a carbon-carbon bond, is readily cleaved upon irradiation (Gs values for these polymers are typically 10), and several sensitive resists have been developed based on this chemistry (53). One material that has been made commercially available is poly (butene-1-sulfone) (54). [Pg.145]

SO2 Sulfur dioxide Preparation of sulfuric acid food preservative metal refining... [Pg.110]

Similar halogenations have been done on 2-lithio-l-phenylsulfonylindole[2], 2-Lithio-l-phenylsulfonylindole is readily converted to the 2-(trimethylsilyl) derivative[2,3]. 2-Trialkylstannylindoles can also be prepared via 2-lithio-indoles[4,5], 2-Sulfonamido groups can be introduced by reaction of a 2-lithioindole with sulfur dioxide, followed by conversion of the sulfinic acid group to the sulfonyl chloride with A-chlorosuccinimide[6]. [Pg.102]

Sodium suifite, acid (saturated) dissolve 600 g of NaHS03 in water and dilute to 1 liter for the preparation of addition compounds with aldehydes and ketones prepare a saturated solution of sodium carbonate in water and saturate with sulfur dioxide. [Pg.1196]

Magnesium sulfate heptahydrate may be prepared by neutralization of sulfuric acid with magnesium carbonate or oxide, or it can be obtained directly from natural sources. It occurs abundantly as a double salt and can also be obtained from the magnesium salts that occur in brines used for the extraction of bromine (qv). The brine is treated with calcium hydroxide to precipitate magnesium hydroxide. Sulfur dioxide and air are passed through the suspension to yield magnesium sulfate (see Chemicals frombrine). Magnesium sulfate is a saline cathartic. [Pg.202]

Selenium trioxide, SeO, is white, crystalline, and hygroscopic. It can be prepared by the action of sulfur trioxide on potassium selenate or of phosphorous pentoxide on selenic acid. It forms selenic acid when dissolved in water. The pure trioxide is soluble in a number of organic solvents. A solution in Hquid sulfur dioxide is a selenonating agent. It is stable in very dry atmospheres at room temperature and on heating it decomposes first to selenium pentoxide [12293-89-9] and then to selenium dioxide. [Pg.333]

Preparation. Thiophosgene forms from the reaction of carbon tetrachloride with hydrogen sulfide, sulfur, or various sulfides at elevated temperatures. Of more preparative value is the reduction of trichi oromethanesulfenyl chloride [594-42-3] by various reducing agents, eg, tin and hydrochloric acid, staimous chloride, iron and acetic acid, phosphoms, copper, sulfur dioxide with iodine catalyst, or hydrogen sulfide over charcoal or sihca gel catalyst (42,43). [Pg.131]

Chemical Properties. Thionyl chloride chemistry has been reviewed (169—173). Significant inorganic reactions of thionyl chloride include its reactions with sulfur trioxide to form pyrosulfuryl chloride and with hydrogen bromide to form thionyl bromide [507-16-4]. With many metal oxides it forms the corresponding metal chloride plus sulfur dioxide and therefore affords a convenient means for preparing anhydrous metal chlorides. [Pg.140]

Ma.nufa.cture. The preparation of sulfuryl chloride is carried out by feeding dry sulfur dioxide and chlorine into a water-cooled glass-lined steel vessel containing a catalyst, eg, activated charcoal. Alternatively, chlorine is passed into Hquefted sulfur dioxide at ca 0°C in the presence of a dissolved catalyst, eg, camphor, a terpene hydrocarbon, an ether, or an ester. The sulfuryl chloride is purified by distillation the commercial product is typically 99 wt % pure, as measured by ASTM distillation method D850. [Pg.143]

Combustion of Sulfur. For most chemical process appHcations requiring sulfur dioxide gas or sulfurous acid, sulfur dioxide is prepared by the burning of sulfur or pyrite [1309-36-0], FeS2. A variety of sulfur and pyrite burners have been developed for sulfuric acid and for the pulp (qv) and paper (qv) iadustries, which produce and immediately consume about 90% of the captive sulfur dioxide produced ia the United States. Information on the European sulfur-to-sulfuric acid technology (with emphasis on Lurgi) is available (255). [Pg.145]

Liquid sulfur dioxide discolors iron, copper, and brass at ca 300 ppm moisture and produces light scale at ca 0.1 wt % moisture and serious corrosion at ca 0.2 wt % or higher moisture content. Copper and brass can be used to handle wet sulfur dioxide where some corrosion can be tolerated, or where the moisture level is low. Wooden tanks are widely used for sulfurous acid preparation, handling, and storage. Sulfite pulp digestors are made of steel lined with acid-resistant brick. [Pg.147]

Heating the adduct of ethylene oxide and sulfur dioxide with primary alcohols in the presence of alkaH hydhdes or a transition-metal haHde yields dialkyl sulfites (107). Another method for the preparation of methyl alkyl sulfites consists of the reaction of diazomethane with alcohoHc solutions of sulfur dioxide (108). [Pg.201]

Alkyl sulfonic acids are prepared by the oxidation of thiols (36,37). This reaction is not quite as simple as would initially appear, because the reaction does not readily go to completion. The use of strong oxidants can result in the complete oxidation of the thiol to carbon dioxide, water, and sulfur dioxide. [Pg.12]

Other method thiosulfates have been prepared by reaction of suspensions of the metal sulfide with sulfur dioxide. However, these thiosulfates are... [Pg.31]

Calcium thiosulfate has been prepared from calcium sulfite and sulfur at 30—40°C, or from boiling lime and sulfur in the presence of sulfur dioxide until a colorless solution is obtained. Alternatively, a concentrated solution of sodium thiosulfate is treated with calcium chloride the crystalline sodium chloride is removed at low temperature. Concentrated solutions of calcium thiosulfate are prepared from ammonium thiosulfate and lime the Hberated ammonium ion is recycled to the ammonium thiosulfate process (85). [Pg.32]

Zinc hydrosulfite (zinc dithionite) is a powerhil reducing agent used in bleaching paper and textiles it is prepared from zinc dust and sulfur dioxide ... [Pg.398]

Zirconium is a highly active metal which, like aluminum, seems quite passive because of its stable, cohesive, protective oxide film which is always present in air or water. Massive zirconium does not bum in air, but oxidizes rapidly above 600°C in air. Clean zirconium plate ignites spontaneously in oxygen of ca 2 MPa (300 psi) the autoignition pressure drops as the metal thickness decreases. Zirconium powder ignites quite easily. Powder (<44 fim or—325 mesh) prepared in an inert atmosphere by the hydride—dehydride process ignites spontaneously upon contact with air unless its surface has been conditioned, ie, preoxidized by slow addition of air to the inert atmosphere. Heated zirconium is readily oxidized by carbon dioxide, sulfur dioxide, or water vapor. [Pg.427]

Other methods of preparing tertiary bismuthines have been used only to a limited extent. These methods iaclude the electrolysis of organometaUic compounds at a sacrificial bismuth anode (54), the reaction between a sodium—bismuth or potassium—bismuth alloy and an alkyl or aryl haUde (55), the thermal elimination of sulfur dioxide from tris(arenesulfiaato)bismuthines (56), and the iateraction of ketene and a ttis(dialkylainino)bismuthine (57). [Pg.131]

Dithionites. Although the free-dithionous acid, H2S2O4, has never been isolated, the salts of the acid, in particular zinc [7779-86-4] and sodium dithionite [7775-14-6] have been prepared and are widely used as industrial reducing agents. The dithionite salts can be prepared by the reaction of sodium formate with sodium hydroxide and sulfur dioxide or by the reduction of sulfites, bisulfites, and sulfur dioxide with metallic substances such as zinc, iron, or zinc or sodium amalgams, or by electrolytic reduction (147). [Pg.149]

Commercial manufacture of methyl bromide is generally based on the reaction of hydrogen bromide with methanol. For laboratory preparation, the addition of sulfuric acid to sodium bromide and methanol has been used (80). Another method involves the treatment of bromine with a reducing agent, such as phosphoms or sulfur dioxide, to generate hydrogen bromide (81). [Pg.294]

The active phase, which is soHd at room temperature, is comprised of mixed potassium and sodium vanadates and pyrosulfates, whereas the support is macroporous siUca, usually in the form of 6—12 mm diameter rings or pellets. The patent Hterature describes a number of ways to prepare the catalyst a typical example contains 7 wt % vanadium pentoxide, 8% potassium added as potassium hydroxide or carbonate, 1% sodium, and 78 wt % siUca, added as diatomaceous earth or siUca gel, formed into rings, and calcined in the presence of sulfur dioxide or sulfur trioxide to convert a portion of the alkah metal salts into various pyrosulfates (81,82). [Pg.203]

Strong dehydrating agents such as phosphorous pentoxide or sulfur trioxide convert chlorosulfuric acid to its anhydride, pyrosulfuryl chloride [7791-27-7] S20 Cl2. Analogous trisulfuryl compounds have been identified in mixtures with sulfur trioxide (3,19). When boiled in the presence of mercury salts or other catalysts, chlorosulfuric acid decomposes quantitatively to sulfuryl chloride and sulfuric acid. The reverse reaction has been claimed as a preparative method (20), but it appears to proceed only under special conditions. Noncatalytic decomposition at temperatures at and above the boiling point also generates sulfuryl chloride, chlorine, sulfur dioxide, and other compounds. [Pg.86]

Carbon-sulfur bonds can be formed by the reaction of elemental sulfur with a lithio derivative, as illustrated by the preparation of thiophene-2-thiol (201) (700S(50)104). If dialkyl or diaryl disulfides are used as reagents to introduce sulfur, then alkyl or aryl sulfides are formed sulfinic acids are available by reaction of lithium derivatives with sulfur dioxide. [Pg.80]

Sulfolane (tetramethylenesulfone) [126-33-0] M 120.2, m 28.5 , b 153-154 /18mm, 285 /760mm, d 1.263, n 1.4820. Prepared commercially by Diels-Alder reaction of 1,3-butadiene and sulfur dioxide, followed by Raney nickel hydrogenation. The principle impurities are water, 3-sulfolene, 2-sulfolene and 2-isopropyl sulfolanyl ether. It is dried by passage through a column of molecular sieves. Distd... [Pg.354]

Another way to prepare fluorinated sulfides is the photochemical alkylation of sulfides or disulfides by perfluoroalkyl iodides [69, 70, 71] (equations 62-64). Reaction of trifluoromethyl bromide with alkyl or aryl disulfides in the presence of a sulfur dioxide radical anion precursor, such as sodium hydroxymethanesulfi-nate, affords trifluoromethyl sulfides [72] (equation 65). [Pg.461]

Fluorinated sulflnates are prepared from sodium dithionite and liquid per-fluoroalkyl halides [74] (equation 67). For the transformation of the gaseous and poorly reactive trifluoromethyl bromide, it is necessary to use moderate pressure [75] (equation 68) These reactions are interpreted by a SET between the intermediate sulfur dioxide radical anion and the halide The sodium trifluorometh-anesulfinate thus obtained is an intermediate for a chemical synthesis of triflic acid. [Pg.463]

Tnfluoromethanesulfinate can be prepared from the reaction of trifluoromethyl bromide with sulfur dioxide and zinc [50] (equation 41) Similar insertion occurs when perfluoroalkyl iodides are used as precursors (equations 41 and 42)... [Pg.679]

Commercially available hydrogen fluoride usually is not suitable for catalytic hydrogenation because of its sulfur dioxide content An oxidative treatment with manganese dioxide and distillation are needed for the preparation of hydrogena tion-grade hydrogen fluoride [d, 4]... [Pg.942]


See other pages where Sulfur dioxide preparation is mentioned: [Pg.149]    [Pg.252]    [Pg.574]    [Pg.358]    [Pg.332]    [Pg.95]    [Pg.112]    [Pg.129]    [Pg.148]    [Pg.200]    [Pg.207]    [Pg.334]    [Pg.336]    [Pg.291]    [Pg.88]    [Pg.450]    [Pg.254]    [Pg.493]    [Pg.169]    [Pg.56]    [Pg.326]   
See also in sourсe #XX -- [ Pg.912 ]

See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Dioxide 383 preparation

Sulfur preparation

© 2024 chempedia.info