Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur chemical reactions

Cynes, B. L., Chemical Reactions as a Means of Separation—Sulfur Removal, Marcel Dekker, New York, 1977. [Pg.320]

Detergents may be produced by the chemical reaction of fats and fatty acids with polar materials such as sulfuric or phosphoric acid or ethylene oxide. Detergents emulsify oil and grease because of their abiUty to reduce the surface tension and contact angle of water as well as the interfacial tension between water and oil. Recent trends in detergents have been to lower phosphate content to prevent eutrification of lakes when detergents are disposed of in municipal waste. [Pg.135]

Chemistry ndProperties. The chemistry of phosphoric acid manufacture and purification is highly complex, largely because of the presence of impurities in the rock. The main chemical reaction in the acidulation of phosphate rock using sulfuric acid to produce phosphoric acid is... [Pg.225]

Boron trifluoride catalyst may be recovered by distillation, chemical reactions, or a combination of these methods. Ammonia or amines are frequently added to the spent catalyst to form stable coordination compounds that can be separated from the reaction products. Subsequent treatment with sulfuric acid releases boron trifluoride. An organic compound may be added that forms an adduct more stable than that formed by the desired product and boron trifluoride. In another procedure, a fluoride is added to the reaction products to precipitate the boron trifluoride which is then released by heating. Selective solvents may also be employed in recovery procedures (see Catalysts,regeneration). [Pg.162]

Copper is frequently a main impurity ia blast-furnace charges, and its limited solubiUty ia molten lead as copper sulfide requires that the excess be removed by chemical reaction with components of the charge. For this reason enough sulfur is left ia the siater to form a copper sulfide matte layer having a specific gravity of 5.2. [Pg.36]

Precipitation can also occur upon chemical reaction between the impurity and a precipitating agent to form a compound insoluble in the molten metal. The refining of cmde lead is an example of this process. Most copper is removed as a copper dross upon cooling of the molten metal, but the removal of the residual copper is achieved by adding sulfur to precipitate copper sulfide. The precious metals are separated by adding zinc to Hquid lead to form soHd intermetaHic compounds of zinc with gold and silver (Parkes process). The precious metals can then be recovered by further treatment (see Lead). [Pg.169]

Sulfur is unusual compared to most large mineral commodities in that the largest portion of sulfur is used as a chemical reagent rather than as a component of a finished product. Its predominant use as a process chemical generally requires that it first be converted to an intermediate chemical product prior to use in industry. In most of the ensuing chemical reactions between these sulfur-containing intermediate products and other minerals and chemicals, the sulfur values are not retained. Rather, the sulfur values are most often discarded as a component of the waste product. [Pg.125]

Chemical Reactions. Sulfur dichloride reacts with an excess of sulfur trioxide forming pyrosulfuryl chloride ... [Pg.139]

Sodium ethyl thiosulfate [26264-37-9] is also known as Bunte s salt after the name of its discoverer. Bunte salts may be thought of as esters of thiosulfuric acid (94—96). In essentially all of their chemical reactions, the cleavage is between the divalent and hexavalent sulfur atom. For example, acid hydrolysis produces a thiol and the acid sulfate ... [Pg.32]

The side groups of the amino acids vary markedly in size and chemical nature and play an important role in the chemical reactions of the fiber. For example, the basic groups (hisidine, arginine, and lysine) can attract acid (anionic) dyes, and in addition the side chains of lysine and hisidine are important sites for the attachment of reactive dyes. The sulfur-containing amino acid cysteine plays a very important role, because almost all of the cysteine residues in the fiber are linked in pairs to form cystine residues, which provide a disulfide bridge —S—S— between different polypeptide molecules or between segments of the same molecules as shown ... [Pg.343]

A typical feed to a commercial process is a refinery stream or a steam cracker B—B stream (a stream from which butadiene has been removed by extraction and isobutylene by chemical reaction). The B—B stream is a mixture of 1-butene, 2-butene, butane, and isobutane. This feed is extracted with 75—85% sulfuric acid at 35—50°C to yield butyl hydrogen sulfate. This ester is diluted with water and stripped with steam to yield the alcohol. Both 1-butene and 2-butene give j -butyl alcohol. The sulfuric acid is generally concentrated and recycled (109) (see Butyl alcohols). [Pg.372]

In the sodium—sulfur storage battery above 300°C, the overall chemical reaction occurs between molten sodium metal and sulfur to form sodium polysulfide. The cell voltage is related to the activity of the sodium ( Aia) sulfide relative to its activity in the metal. [Pg.355]

Ethyl Ether. Most ethyl ether is obtained as a by-product of ethanol synthesis via the direct hydration of ethylene. The procedure used for production of diethyl ether [60-29-7] from ethanol and sulfuric acid is essentially the same as that first described in 1809 (340). The chemical reactions involved in the production of ethyl ether by the indirect ethanol-from-ethylene process are like those for the production of ether from ethanol using sulfuric acid. [Pg.416]

Saccharin does not comply with the normal 4n + 2)ir-electron rule for aromaticity, but in view of the fact that it has been shown earlier to have a degree of ir-electron delocalization through the sulfur atom, and for convenience of classification of its chemical reactions, it will be considered to be aromatic in the subsequent sections dealing with its chemistry. [Pg.145]

Sulfur Dioxide EPA Method 6 is the reference method for determining emissions of sulfur dioxide (SO9) from stationary sources. As the gas goes through the sampling apparatus (see Fig. 25-33), the sulfuric acid mist and sulfur trioxide are removed, the SO9 is removed by a chemical reaction with a hydrogen peroxide solution, and, finally, the sample gas volume is measured. Upon completion of the rim, the sulfuric acid mist and sulfur trioxide are discarded, and the collected material containing the SO9 is recovered for analysis at the laboratory. The concentration of SO9 in the sample is determined by a titration method. [Pg.2200]

Although it does not physically explain the nature of the removal process, deposition velocity has been used to account for removal due to impaction with vegetation near the surface or for chemical reactions with the surface. McMahon and Denison (12) gave many deposition velocities in their review paper. Examples (in cm s ) are sulfur dioxide, 0.5-1.2 ozone, 0.1-2.0 iodine, 0.7-2.8 and carbon dioxide, negligible. [Pg.287]

Phosphoric acid made by the wet process, in which phosphate rock is treated with sulfuric acid, is highly inert toward lead in any concentration for temperatures up to 150°C, However, in the dry process, where hydrogen phosphate (H3PO4) is made directly from phosphorus or phosphorus pentoxide (P2OS), a chemical reaction with lead occurs. [Pg.86]

Direct conversion processes use chemical reactions to oxidize H2S and produce elemental sulfur. These processes are generally based either on the reaction of H2S and O2 or H2S and SO2. Both reactions yield water and elemental sulfur. These processes are licensed and involve specialized catalysts and/or solvents. A direct conversion process can be ii.scd directly on the produced gas stream. Where large flow rates are encoLui tered. ii is more common to contact the produced gas stream with a chemical or physical solvent and use a direct conversion proce.ss on the acid cas liberated in the regeneration step. [Pg.173]


See other pages where Sulfur chemical reactions is mentioned: [Pg.408]    [Pg.386]    [Pg.444]    [Pg.234]    [Pg.11]    [Pg.380]    [Pg.453]    [Pg.1]    [Pg.3]    [Pg.117]    [Pg.210]    [Pg.215]    [Pg.163]    [Pg.198]    [Pg.205]    [Pg.61]    [Pg.535]    [Pg.303]    [Pg.32]    [Pg.133]    [Pg.1543]    [Pg.1665]    [Pg.2173]    [Pg.168]    [Pg.233]    [Pg.558]    [Pg.290]    [Pg.408]    [Pg.710]    [Pg.685]   
See also in sourсe #XX -- [ Pg.685 , Pg.686 , Pg.687 , Pg.688 ]

See also in sourсe #XX -- [ Pg.685 , Pg.686 , Pg.687 , Pg.688 ]




SEARCH



Sulfur Compounds Chemical Reactions

Sulfur dioxide chemical reactions

Sulfur trioxide chemical reactions

Sulfuric acid balanced chemical reactions

© 2024 chempedia.info