Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur amides

The compound H3N3S2 is an iinide-amide of sulfur. Amides of sulfur with a simpler structure, such as the compounds (XXXVII-XL) have not yet... [Pg.174]

This method was designed to produce an acetyl intermediate just like that in the failed recipe a few paragraphs above using only sulfuric acid and acetonitrile [93]. This reaction works, in theory, in a so-so manner on allylbenzene but not on safrole. This method will not make X for many reasons. So why does underground literature and DEA forensic scientists keep claiming that it does Strike doesn t know either. Let s see what the man who invented this. Dr. Ritter, had to say back in 1952 "several attempts to obtain amides from...safrol (sic) were fruitless. [94]. What makes all these people think that this will work unless no one did their homework. This is another sore spot of Strike s and... [Pg.199]

In the synthesis of commercial sulfur-heterocycles two interesting reactions are used (i) diphenylamines may be connected by a sulfur bridge in the orfho-positions (ii) the amino grouping of sulfonamides undergoes condensation reactions with neighboring imino- and amide groups. [Pg.309]

A major advance was devised by Pehr Edman (University of Lund Sweden) that has become the standard method for N terminal residue analysis The Edman degrada tion IS based on the chemistry shown m Figure 27 12 A peptide reacts with phenyl iso thiocyanate to give a phenylthwcarbamoyl (PTC) denvative as shown m the first step This PTC derivative is then treated with an acid m an anhydrous medium (Edman used mtromethane saturated with hydrogen chloride) to cleave the amide bond between the N terminal ammo acid and the remainder of the peptide No other peptide bonds are cleaved m this step as amide bond hydrolysis requires water When the PTC derivative IS treated with acid m an anhydrous medium the sulfur atom of the C=S unit acts as... [Pg.1134]

Amides. Names for amides are derived from the names of the acid radicals (or from the names of acids by replacing acid by amide) for example, S02(NH2)2, sulfonyl diamide (or sulfuric diamide) NH2SO3H, sulfamidic acid (or amidosulfuric acid). [Pg.221]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

The reaction of thioethers with ethyleneimine in the presence of acid yields sulfonium compounds. The reaction is reversible under alkaline conditions (125). Compounds in which double-bonded sulfur can exist in tautomerism with a form having a free SH group, such as thiourea (126,127), thiocarboxyhc acids (128), and thiophosphates (129), react to give aminoaLkylated products. The P-aminoethyl thiocarboxylate rearranges to give the amide. [Pg.5]

The biochemical basis for the toxicity of mercury and mercury compounds results from its ability to form covalent bonds readily with sulfur. Prior to reaction with sulfur, however, the mercury must be metabolized to the divalent cation. When the sulfur is in the form of a sulfhydryl (— SH) group, divalent mercury replaces the hydrogen atom to form mercaptides, X—Hg— SR and Hg(SR)2, where X is an electronegative radical and R is protein (36). Sulfhydryl compounds are called mercaptans because of their ability to capture mercury. Even in low concentrations divalent mercury is capable of inactivating sulfhydryl enzymes and thus causes interference with cellular metaboHsm and function (31—34). Mercury also combines with other ligands of physiological importance such as phosphoryl, carboxyl, amide, and amine groups. It is unclear whether these latter interactions contribute to its toxicity (31,36). [Pg.109]

Chevron Chemical Co. began commercial production of isophthahc acid in 1956. The sulfur-based oxidation of / -xylene in aqueous ammonia at about 320°C and 7,000—14,000 kPa produced the amide. This amide was then hydrolyzed with sulfuric acid to produce isophthahc acid at about 98% purity. Arco Chemical Co. began production in 1970 using air oxidation in acetic acid catalyzed by a cobalt salt and promoted by acetaldehyde at 100—150°C and 1400—2800 kPa (14—28 atm). The cmde isophthahc acid was dissolved and recrystallized to yield a product exceeding 99% purity. The Arco technology was not competitive and the plant was shut down in 1974. [Pg.493]

Phosphoms trichloride and pentachloride form sodium chloride and sodium phosphide, respectively, in the presence of sodium. Phosphoms oxychloride, POCl, when heated with sodium, explodes. Carbon disulfide reacts violendy, forming sodium sulfide. Sodium amide (sodamide), NaNH2, is formed by the reaction of ammonia gas with Hquid sodium. SoHd sodium reacts only superficially with Hquid sulfur dioxide but molten sodium and gaseous... [Pg.163]

Amide-Based Sulfonic Acids. The most important amide-based sulfonic acids are the alkenylarnidoalkanesulfoiiic acids. These materials have been extensively described ia the Hterature. A variety of examples are given ia Table 5. Acrylarnidoalkanesulfoiiic acids are typically prepared usiag technology originally disclosed by Lubrizol Corporation ia 1970 (80). The chemistry iavolves an initial reaction of an olefin, which contains at least one aHyhc proton, with an acyl hydrogen sulfate source, to produce a sulfonated intermediate. This intermediate subsequendy reacts with water, acrylonitrile, and sulfuric acid. [Pg.101]

Because phenoHc compounds are easily sulfonated, their sulfation must be accompHshed with mil der sulfating agents, eg, complexes of sulfur thoxide or chlorosulfonic acid with trimethyl amine, dimethylform amide, pyhdine, or dim ethyl a n i1 in e, in anhydrous or aqueous medium below 100°C (86-89). [Pg.200]

Sulfated Acids, Amides, and Esters. Reaction with sulfuric acid may be carried out on fatty acids, alkanolamides, and short-chain esters of fatty acids. The disodium salt of sulfated oleic acid is a textile additive and an effective lime soap dispersant. A typical sulfated alkanolamide stmcture is CiiH23C0NHCH2CH20S03Na. Others include the sulfates of mono and diethanolamides of fatty acids in the detergent range. The presence of... [Pg.244]

Addition compounds form with those organics that contain a donor atom, eg, ketonic oxygen, nitrogen, and sulfur. Thus, adducts form with amides, amines, and A/-heterocycles, as well as acid chlorides and ethers. Addition compounds also form with a number of inorganic compounds, eg, POCl (6,120). In many cases, the addition compounds are dimeric, eg, with ethyl acetate, in titanium tetrachloride-rich systems. By using ammonia, a series of amidodichlorides, Ti(NH2) Cl4, is formed (133). [Pg.131]

Condensa.tlon, This term covers all processes, not previously iacluded ia other process definitions, where water or hydrogen chloride is eliminated ia a reaction involving the combination of two or more molecules. The important condensation reactions are nitrogen and sulfur heterocycle formation, amide formation from acid chlorides, formation of substituted diphenyl amines, and misceUaneous cyclizations. [Pg.293]

The sulfur atom can be used to initiate C—C bond formation. 2-Thio- and 4-thio-6,7-diphenyllumazine (166) react with phenacyl halides to give the phenacylthio derivatives (167), which on heating in DMF in the presence of triphenylphosphine extrude sulfur to form the benzoylmethyl derivative (168) in its tautomeric vinylogous amide form (169 equation 51). [Pg.300]

In contrast to the above additions A-allyl- and substituted A-allyl-amides, -urethanes, -ureas and -thioureas undergo intramolecular cyclization only in 6(3-96% sulfuric acid to give the corresponding oxazolinium and thiazolinium salts. Treatment of these cations with base yields 2-oxazolines and 2-thiazolines in moderate to good yields. The reaction is illustrated by the conversion of A-2-phenylallylacetamide (342) into 2,5-dimethyl-5-phenyl-2-oxazoline (343) in 70% yield 70JOC3768) (see also Chapter 4.19). [Pg.141]


See other pages where Sulfur amides is mentioned: [Pg.38]    [Pg.9]    [Pg.38]    [Pg.42]    [Pg.144]    [Pg.243]    [Pg.40]    [Pg.72]    [Pg.38]    [Pg.9]    [Pg.38]    [Pg.42]    [Pg.144]    [Pg.243]    [Pg.40]    [Pg.72]    [Pg.1129]    [Pg.220]    [Pg.134]    [Pg.295]    [Pg.351]    [Pg.308]    [Pg.508]    [Pg.510]    [Pg.224]    [Pg.164]    [Pg.172]    [Pg.176]    [Pg.221]    [Pg.240]    [Pg.359]    [Pg.95]    [Pg.95]    [Pg.101]    [Pg.22]    [Pg.80]    [Pg.81]    [Pg.83]    [Pg.295]    [Pg.298]   
See also in sourсe #XX -- [ Pg.2 , Pg.243 ]

See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Amides and Imides of the Oxyacids Sulfur

Amides reaction with pyridine-sulfur trioxide

Amides sulfur compounds

From amide group with sulfur

Phosphorus sulfur trichloride amides

Sulfur compounds reactions with amides

Sulfur tetrafluoride reaction with amides

Sulfur-nitrogen-oxygen compounds amides

Sulfuric acid amide esters

Sulfuric acid amides

Sulfurous acid amides

© 2024 chempedia.info