Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject precision

Healthy subjects Precision Publications Thorough QT studies Variability... [Pg.436]

Because this separation is not subject to precise standards today, the resulting wide variations make comparisons between laboratories risky. [Pg.83]

To resume the brief historical sketch, the subject of monolayers developed rapidly during the interwar years, with the names of Langmuir, Adam, Harkins, and Rideal perhaps the most prominent the subject became one of precise and... [Pg.103]

A complete and mathematically precise treatment of the subject. Includes topics which are not usually... [Pg.2359]

The analogous procedure for a multivariate problem is to obtain many experimental equations like Eqs. (3-55) and to extract the best slopes from them by regression. Optimal solution for n unknowns requires that the slope vector be obtained from p equations, where p is larger than n, preferably much larger. When there are more than the minimum number of equations from which the slope vector is to be extracted, we say that the equation set is an overdetermined set. Clearly, n equations can be selected from among the p available equations, but this is precisely what we do not wish to do because we must subjectively discard some of the experimental data that may have been gained at considerable expense in time and money. [Pg.81]

The raw data collected during the experiment are then analyzed. Frequently the data must be reduced or transformed to a more readily analyzable form. A statistical treatment of the data is used to evaluate the accuracy and precision of the analysis and to validate the procedure. These results are compared with the criteria established during the design of the experiment, and then the design is reconsidered, additional experimental trials are run, or a solution to the problem is proposed. When a solution is proposed, the results are subject to an external evaluation that may result in a new problem and the beginning of a new analytical cycle. [Pg.6]

Uncertainty expresses the range of possible values that a measurement or result might reasonably be expected to have. Note that this definition of uncertainty is not the same as that for precision. The precision of an analysis, whether reported as a range or a standard deviation, is calculated from experimental data and provides an estimation of indeterminate error affecting measurements. Uncertainty accounts for all errors, both determinate and indeterminate, that might affect our result. Although we always try to correct determinate errors, the correction itself is subject to random effects or indeterminate errors. [Pg.64]

The development of precise and reproducible methods of sensory analysis is prerequisite to the determination of what causes flavor, or the study of flavor chemistry. Knowing what chemical compounds are responsible for flavor allows the development of analytical techniques using chemistry rather than human subjects to characterize flavor (38,39). Routine analysis in most food production for the quaUty control of flavor is rare (40). Once standards for each flavor quaUty have been synthesized or isolated, they can also be used to train people to do more rigorous descriptive analyses. [Pg.3]

Dyes in general and triaryknethane dyes in particular are rarely subjected to chemical processing once they have been formed. The introduction of substituents is usually carried out during the manufacture of the intermediates where the position and number of the groups introduced may be more precisely controlled. Dyes are sometimes exposed to oxidising and reducing conditions during appHcation and afterward. [Pg.269]

Flow cytometer cell counts are much more precise and more accurate than hemocytometer counts. Hemocytometer cell counts are subject both to distributional (13) and sampling (14—16) errors. The distribution of cells across the surface of a hemocytometer is sensitive to the technique used to charge the hemocytometer, and nonuniform cell distribution causes counting errors. In contrast, flow cytometer counts are free of distributional errors. Statistically, count precision improves as the square root of the number of cells counted increases. Flow cytometer counts usually involve 100 times as many cells per sample as hemocytometer counts. Therefore, flow cytometry sampling imprecision is one-tenth that of hemocytometry. [Pg.401]

Automated soldering operations can subject the mol ding to considerable heating, and adequate heat deflection characteristics ate an important property of the plastics that ate used. Flame retardants (qv) also ate often incorporated as additives. When service is to be in a humid environment, it is important that plastics having low moisture absorbance be used. Mol ding precision and dimensional stabiUty, which requites low linear coefficients of thermal expansion and high modulus values, ate key parameters in high density fine-pitch interconnect devices. [Pg.32]

Perhaps the most precise, reHable, accurate, convenient, selective, inexpensive, and commercially successful electroanalytical techniques are the passive techniques, which include only potentiometry and use of ion-selective electrodes, either direcdy or in potentiometric titrations. Whereas these techniques receive only cursory or no treatment in electrochemistry textbooks, the subject is regularly reviewed and treated (19—22). Reference 22 is especially recommended for novices in the field. Additionally, there is a journal, Ion-Selective Electrode Reviews, devoted solely to the use of ion-selective electrodes. [Pg.55]

This field is very large and a detailed study of the subject is beyond the scope of this handbook. We will limit our discussions to the area of this subject that relates to the control of a.c. motors and attempt to identify the different solid-state devices that have been developed and their application in the control of a.c. motors. ()nly the more common circuits and configurations are discussed. The brief discussion of the subject provided here, however, should help the reader to understand this subject in general terms and to use this knowledge in the field of a.c. motor controls to achieve from a soft start to a very precise speed control and, more importantly, to conserve the energy of the machine which would be wasted otherwise. For more details of. statie controllers see the Further reading (Sr. nos. 2, 4., 5, 8 and 12) at the end of the chapter. To... [Pg.111]

In previous studies, the main tool for process improvement was the tubular reactor. This small version of an industrial reactor tube had to be operated at less severe conditions than the industrial-size reactor. Even then, isothermal conditions could never be achieved and kinetic interpretation was ambiguous. Obviously, better tools and techniques were needed for every part of the project. In particular, a better experimental reactor had to be developed that could produce more precise results at well defined conditions. By that time many home-built recycle reactors (RRs), spinning basket reactors and other laboratory continuous stirred tank reactors (CSTRs) were in use and the subject of publications. Most of these served the original author and his reaction well but few could generate the mass velocities used in actual production units. [Pg.279]

Servos gives a beautifully clear explanation of the subject-matter of physical chemistry, as Ostwald pursued it. Another excellent recent book on the evolution of physical chemistry, by Laidler (1993) is more guarded in its attempts at definition. He says that it can be defined as that part of chemistry that is done using the methods of physics, or that part of physics that is concerned with chemistry, i.e., with specific chemical substances , and goes on to say that it cannot be precisely defined, but that he can recognise it when he sees it Laidler s attempt at a definition is not entirely satisfactory, since Ostwald s objective was to get away from insights which were specific to individual substances and to attempt to establish laws which were general. [Pg.26]

The papers which introduced the concept of a dislocation all appeared in 1934 (Polanyi 1934, Taylor 1934, Orowan 1934). Figure 3.20 shows Orowan s original sketch of an edge dislocation and Taylor s schematic picture of a dislocation moving. It was known to all three of the co-inventors that plastic deformation took place by slip on lattice planes subjected to a higher shear stress than any of the other symmetrically equivalent planes (see Chapter 4, Section 4.2.1). Taylor and his collaborator Quinney had also undertaken some quite remarkably precise calorimetric research to determine how much of the work done to deform a piece of metal... [Pg.110]


See other pages where Subject precision is mentioned: [Pg.98]    [Pg.1909]    [Pg.98]    [Pg.1909]    [Pg.282]    [Pg.190]    [Pg.1066]    [Pg.12]    [Pg.39]    [Pg.226]    [Pg.1694]    [Pg.2455]    [Pg.28]    [Pg.516]    [Pg.347]    [Pg.22]    [Pg.358]    [Pg.86]    [Pg.416]    [Pg.373]    [Pg.70]    [Pg.108]    [Pg.1]    [Pg.291]    [Pg.97]    [Pg.515]    [Pg.130]    [Pg.233]    [Pg.262]    [Pg.262]    [Pg.405]    [Pg.232]    [Pg.242]    [Pg.348]    [Pg.455]    [Pg.2547]    [Pg.187]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



© 2024 chempedia.info