Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject of chemical reactions

The subject of chemical reactions under supercritical conditions is well outside the scope of matters of major concern to combustion related considerations. However, a trend to increase the compression ratio of some turbojet engines has raised concerns that the fuel injection line to the combustion chamber could place the fuel in a supercritical state that is the pyrolysis of the fuel in the line could increase the possibility of carbon formations such as soot. The... [Pg.139]

This chapter gives an introduction to the subject of chemical reaction engineering. The first part introduces basic definitions and concepts of chemical reaction engineering and chemical kinetics and the importance of mass and heat transfer to the overall chemical reaction rate. In the second part, the basic concepts of chemical reactor design are covered, including steady-state models and their use in the development... [Pg.21]

We have already stated ( 1.4.2 and 2.5) that the subject of chemical reaction kinetics is both important and poorly understood in geochemical modeling. The problem is that this subject is much more difficult than equilibrium thermodynamics. The kinetics of a few reactions are fairly well understood, but a great many more have completely unknown kinetics. Furthermore, those that are understood have usually been studied in fairly clean systems, and the effect of added components is uncertain. Even if some reactions were perfectly understood, the usefulness of including the kinetics of... [Pg.251]

The overall requirement is 1.0—2.0 s for low energy waste compared to typical design standards of 2.0 s for RCRA ha2ardous waste units. The most important, ie, rate limiting steps are droplet evaporation and chemical reaction. The calculated time requirements for these steps are only approximations and subject to error. For example, formation of a skin on the evaporating droplet may inhibit evaporation compared to the theory, whereas secondary atomization may accelerate it. Errors in estimates of the activation energy can significantly alter the chemical reaction rate constant, and the pre-exponential factor from equation 36 is only approximate. Also, interactions with free-radical species may accelerate the rate of chemical reaction over that estimated solely as a result of thermal excitation therefore, measurements of the time requirements are desirable. [Pg.56]

The insulation on the conductor is therefore exposed to a considerable concentration of o2one and subjected to chemical reactions and mechanical erosion from the impingement of ions. This causes deleterious effects and shortens the life of the cable. [Pg.326]

If the T and P of a multiphase system are constant, then the quantities capable of change are the iadividual mole numbers of the various chemical species / ia the various phases p. In the absence of chemical reactions, which is assumed here, the may change only by iaterphase mass transfer, and not (because the system is closed) by the transfer of matter across the boundaries of the system. Hence, for phase equUibrium ia a TT-phase system, equation 212 is subject to a set of material balance constraints ... [Pg.498]

The general criterion of chemical reaction equiUbria is the same as that for phase equiUbria, namely that the total Gibbs energy of a closed system be a minimum at constant, uniform T and P (eq. 212). If the T and P of a siagle-phase, chemically reactive system are constant, then the quantities capable of change are the mole numbers, n. The iadependentiy variable quantities are just the r reaction coordinates, and thus the equiUbrium state is characterized by the rnecessary derivative conditions (and subject to the material balance constraints of equation 235) where j = 1,11,.. ., r ... [Pg.501]

Chemical reaction always enhances the rate of mass transfer between phases. The possible magnitudes of such enhancements are indicated in Tables 23-6 and 23-7. They are no more predictable than are specific rates of chemical reactions and must be found experimentally for each case, or in the relatively sparse literature on the subject. [Pg.706]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

The polyelectrolyte catalysis of chemical reactions involving ionic species has been the subject of extensive investigations since the pioneering studies of Morawetz et al. [12] and Ise et al. [13-17]. The catalytic effect or the ability of poly-electrolytes to enhance or retard reaction rates is mainly due to concentration or exclusion of either or both of the ionic reactants by the polyions added to the reaction systems. For example, the chemical reaction between ionic species carrying the same charge is enhanced in the presence of polyions carrying the opposite charge. This enhancement can be attributed to an increase in the local concentration... [Pg.52]

As described in Section 4-1. one important class of chemical reactions involves transfers of protons between chemical species. An equally important class of chemical reactions involves transfers of electrons between chemical species. These are oxidation-reduction reactions. Commonplace examples of oxidation-reduction reactions include the msting of iron, the digestion of food, and the burning of gasoline. Paper manufacture, the subject of our Box, employs oxidation-reduction chemishy to bleach wood pulp. All metals used in the chemical industry and manufacturing are extracted and purified through oxidation-reduction chemistry, and many biochemical pathways involve the transfer of electrons from one substance to another. [Pg.247]

The rates of chemical processes and their variation with conditions have been studied for many years, usually for the purpose of determining reaction mechanisms. Thus, the subject of chemical kinetics is a very extensive and important part of chemistry as a whole, and has acquired an enormous literature. Despite the number of books and reviews, in many cases it is by no means easy to find the required information on specific reactions or types of reaction or on more general topics in the field. It is the purpose of this series to provide a background reference work, which will enable such information to be obtained either directly, or from the original papers or reviews quoted. [Pg.624]

With the introduction of LT and VT STM, it is now possible to monitor the fundamental steps of chemical reactions, that is, reactant chemisorption, diffusion, and catalytic transformation. A detailed review covering this subject was published by Wintterlin in 2000 [24]. Since then, in situ STM studies have flourished and expanded to the visualization of the reaction pathway and kinetics of surface processes. In the following section, we highlight selected examples of recent progress in using in situ STM for studying fundamental catalytic processes. [Pg.59]

One feature that distinguishes the education of the chemical engineer from that of other engineers is an exposure to the basic concepts of chemical reaction kinetics and chemical reactor design. This textbook provides a judicious introductory level overview of these subjects. Emphasis is placed on the aspects of chemical kinetics and material and energy balances that form the foundation for the practice of reactor design. [Pg.598]

The ratio of palmitic acid to stearic acid (P/S) can be used to differentiate between drying oils, since these two saturated monocarboxylic acids are less subject to chemical reactions during treatment and ageing. Also, they have a similar chemical reactivity, so their ratio can be hypothesized to be relatively unaltered during ageing. The P/S ratio approach was pioneered by Mills [10], and has been subsequently adopted in a number of studies [7 9]. Typical values of the P/S ratio are 1 2 for linseed oil, 2 3 for walnut oil, 3 8 for poppy seed oil and 2.5 3.5 for egg. [Pg.199]

The development of theoretical chemistry ceased at about 1930. The last significant contributions came from the first of the modern theoretical physicists, who have long since lost interest in the subject. It is not uncommon today, to hear prominent chemists explain how chemistry is an experimental science, adequately practiced without any need of quantum mechanics or the theories of relativity. Chemical thermodynamics is routinely rehashed in the terminology and concepts of the late nineteenth century. The formulation of chemical reaction and kinetic theories take scant account of statistical mechanics and non-equilibrium thermodynamics. Theories of molecular structure are entirely classical and molecular cohesion is commonly analyzed in terms of isolated bonds. Holistic effects and emergent properties that could... [Pg.521]

Changes in the properties of polymer materials caused by absorption of high-energy radiation result from a variety of chemical reactions subsequent to the initial ionization and excitation. A number of experimental procedures may be used to measure, directly or indirectly, the radiation chemical yields for these reactions. The chemical structure of the polymer molecule is the main determinant of the nature and extent of the radiation degradation, but there are many other parameters which influence the behaviour of any polymer material when subjected to high-energy radiation. [Pg.1]

Kinetics is the study of the factors which influence reaction rates. Enzyme-catalysed reactions are subject to the same principles of rate regulation as any other type of chemical reaction. For example, the pH, temperature, pressure (if gases are involved) and concentration of reactants all impact on the velocity reactions. Unlike inorganic catalysts, like platinum for example, there is a requirement for the substrate (reactant) to engage a particular region of the enzyme known as the active site. This binding is reversible and is simply represented thus ... [Pg.14]

Figures 8 and 9 ow two specially designed multicompartment Langmuir troughs that permit the treatment of a monolayer with a series of different subphase reagent solutions, thus producing a known series of chemical reactions in the film. Following these treatments, the films may be transferred to a solid support or subjected to quantitative analysis to determine the outcome of the reactions. Figures 8 and 9 ow two specially designed multicompartment Langmuir troughs that permit the treatment of a monolayer with a series of different subphase reagent solutions, thus producing a known series of chemical reactions in the film. Following these treatments, the films may be transferred to a solid support or subjected to quantitative analysis to determine the outcome of the reactions.
Any species dissolved in the water is clearly going to be subject to chemical reaction with these ultrasonically produced radicals and/or hydrogen peroxide. Thus if iodide ion is present in solution iodine will be liberated. Spin trapping ESR techniques afforded positive identification of the radical species sonically generated in water [40]. [Pg.86]

With the availability of perturbation techniques for measuring the rates of rapid reactions (Sec. 3.4), the subject of relaxation kinetics — rates of reaction near to chemical equilibrium — has become important in the study of chemical reactions.Briefly, a chemical system at equilibrium is perturbed, for example, by a change in the temperature of the solution. The rate at which the new equilibrium position is attained is a measure of the values of the rate constants linking the equilibrium (or equilibria in a multistep process) and is controlled by these values. [Pg.32]


See other pages where Subject of chemical reactions is mentioned: [Pg.301]    [Pg.197]    [Pg.318]    [Pg.1]    [Pg.479]    [Pg.150]    [Pg.301]    [Pg.197]    [Pg.318]    [Pg.1]    [Pg.479]    [Pg.150]    [Pg.474]    [Pg.32]    [Pg.450]    [Pg.1115]    [Pg.1]    [Pg.835]    [Pg.11]    [Pg.1081]    [Pg.455]    [Pg.36]    [Pg.265]    [Pg.17]    [Pg.917]    [Pg.310]    [Pg.1]    [Pg.20]    [Pg.23]    [Pg.31]    [Pg.505]    [Pg.332]    [Pg.277]    [Pg.392]    [Pg.143]   
See also in sourсe #XX -- [ Pg.402 , Pg.402 , Pg.403 , Pg.403 ]




SEARCH



Chemical 4381 Subject

Subject reactions

© 2024 chempedia.info