Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject monomers

First, a few words about the chemistry of the subject. Monomer units of a protein chain are residues of the so-called amino acids, and have a structure of the sort CO CWft NH. They are called residues, because amino acids have extra OH group on the left end and extra H atom on the right end when amino acids combine to form a peptide, (almost) each of them looses water (H2O), and what enters the chain is a residue. The exceptions are two monomers at the ends the one which keeps the OH group is called the C-terminal, while the other one which keeps the H is called N-terminal of the chain. [Pg.64]

Onium salt cationic photoinitiators present many unique and interesting opportunities for basic studies of cationic ring-opening polymerizations. Since they are latent photochemical sources of strong Bronsted adds, they can be dissolved in the subject monomers and then precisely tri ered on demand by the application of light. Mixing problems and the use of complex stopped-flow devices and other apparatuses required to overcome them are thus avoided. Only the rate of initiation is different in a photoinitiated cationic polymerization as compared to a conventional thermally initiated polymerization. The rate of initiation for an onium salt-photoinitiated cationic potymerization (eqn [68]) is... [Pg.948]

Other properties of association colloids that have been studied include calorimetric measurements of the heat of micelle formation (about 6 kcal/mol for a nonionic species, see Ref. 188) and the effect of high pressure (which decreases the aggregation number [189], but may raise the CMC [190]). Fast relaxation methods (rapid flow mixing, pressure-jump, temperature-jump) tend to reveal two relaxation times t and f2, the interpretation of which has been subject to much disagreement—see Ref. 191. A fast process of fi - 1 msec may represent the rate of addition to or dissociation from a micelle of individual monomer units, and a slow process of ti < 100 msec may represent the rate of total dissociation of a micelle (192 see also Refs. 193-195). [Pg.483]

Only one exception to the clean production of two monomer molecules from the pyrolysis of dimer has been noted. When a-hydroxydi-Zvxyljlene (9) is subjected to the Gorham process, no polymer is formed, and the 16-carbon aldehyde (10) is the principal product in its stead, isolated in greater than 90% yield. This transformation indicates that, at least in this case, the cleavage of dimer proceeds in stepwise fashion rather than by a concerted process in which both methylene—methylene bonds are broken at the same time. This is consistent with the predictions of Woodward and Hoffmann from orbital symmetry considerations for such [6 + 6] cycloreversion reactions in the ground state (5). [Pg.428]

After the mbber latex is produced, it is subjected to further polymerization in the presence of styrene (CgHg) and acrylonitrile (C H N) monomers to produce the ABS latex. This can be done in batch, semibatch, or continuous reactors. The other ingredients required for this polymerization are similar to those required for the mbber latex reaction. [Pg.204]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

Perfluoroepoxid.es were first prepared ia the late 1950s by Du Pont Co. Subsequent work on these compounds has taken place throughout the world and is the subject of a number of reviews (1 5). The main use of these epoxides is as intermediates in the preparation of other fluorinated monomers. Although the polymerisation of the epoxides has been described (6—12), the resulting homopolymers and their derivatives are not significant commercial products. Almost all the work on perfluoroepoxides has been with three compounds tetrafluoroethylene oxide (TFEO), hexafluoropropylene oxide (HFPO), and perfluoroisobutylene oxide (PIBO). Most of this work has dealt with HFPO, the most versatile and by far the most valuable of this class of materials (4). [Pg.301]

Acrylic Polymers. Although considerable information on the plasticization of acryUc resins is scattered throughout journal and patent hterature, the subject is compHcated by the fact that acryUc resins constitute a large family of polymers rather than a single polymeric species. An infinite variation in physical properties may be obtained through copolymerization of two or more acryUc monomers selected from the available esters of acryUc and methacryhc acid (30) (see Acrylic esterpolya rs Methacrylic acid and derivatives). [Pg.129]

The ring-opening polymerization of is controUed by entropy, because thermodynamically all bonds in the monomer and polymer are approximately the same (21). The molar cycHzation equihbrium constants of dimethyl siloxane rings have been predicted by the Jacobson-Stockmayer theory (85). The ring—chain equihbrium for siloxane polymers has been studied in detail and is the subject of several reviews (82,83,86—89). The equihbrium constant of the formation of each cycHc is approximately equal to the equihbrium concentration of this cycHc, [(SiR O) Thus the total... [Pg.46]

The monomer, CPD, obtained via cracking of the dimer, DCPD, and the dimer both have extensive uses. Cyclopentadiene is probably the most widely studied conjugated, cycHc diolefin system. Eleven review articles dealing with the chemistry of cyclopentadiene have been pubHshed (1—11). An article dealing specifically with European uses of DCPD has also been pubHshed (12). The discovery ia 1951 of stable metal derivatives has given additional impetus to the study of the chemistry of cyclopentadiene. Eive review articles have been pubHshed on this subject (13—17). [Pg.429]

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

The chemistry of this cure system has been the subject of several studies (44—47). It is now generally accepted that the cure mechanism involves dehydrofluorination adjacent to hexafluoropropylene monomer units. The subsequent fluoroolefin is highly reactive toward nucleophilic attack by a variety of curatives (eg, diamines, diphenols). [Pg.511]

One of the other benefits of incorporating polar monomers in the PSA is the enhancement in cohesive strength. This can be observed in the form of higher shear holding in a static shear test and/or better creep resistance of the adhesive when subject to a constant load. [Pg.490]

Thousands of technical papers and many books have been written on the subject of phenolic resins. The polymer is used in hundreds of diverse applications and in very large volumes. It is used worldwide. In fact the term phenolic resin encompasses a wide variety of materials based on a broad range of phenols and co-monomers. In this short article, we cannot expect complete coverage. Our hope is that we can provide an understanding of the fundamental chemistries, uses, and values of these materials as well as enough references to permit the interested reader to begin his own exploration of the topic. [Pg.869]

Process systems handling polymers and resins (e.g., butyl rubber or ethylene-propylene diene monomer rubbers) are often subject to plugging at dead-end locations such as PR valve inlets. In extreme cases, complete blockage of inlet piping and valve nozzle can result. This problem can be eliminated by the application of a flush-seated PR valve, in which dead-end areas are eliminated by placing the valve disc flush with the vessel wall, in the flow pattern of the contents. [Pg.178]

A numerical study of the MMEP kinetics, as described by the system of nonlinear differential equations (26), subject to mass conservation (Eq. (27)), has been carried out [64] for a total number of 1000 monomers and different initial MWDs. As expected, and in contrast to the case of wormlike micelles, it has been found that during relaxation to a new equilibrium state the temporal MWD does not preserve its exponential form. [Pg.541]

Photoinitiation of polymerization of MMA and styrene by Mn(facac)3 was also investigated, and it was shown that the mechanism of photoinitiation is different [33] from that of Mn(acac)3 and is subject to the marked solvent effect, being less efficient in benzene than in ethyl acetate solutions. The mechanism shown in Schemes (15) and (16) illustrate the photodecomposition scheme of Mn(facac)3 in monomer-ethyl acetate and monomer-benzene solutions, respectively. (C = manganese chelate complex.)... [Pg.248]


See other pages where Subject monomers is mentioned: [Pg.335]    [Pg.335]    [Pg.2369]    [Pg.2449]    [Pg.126]    [Pg.158]    [Pg.189]    [Pg.231]    [Pg.427]    [Pg.164]    [Pg.195]    [Pg.387]    [Pg.376]    [Pg.393]    [Pg.220]    [Pg.361]    [Pg.47]    [Pg.496]    [Pg.464]    [Pg.518]    [Pg.488]    [Pg.538]    [Pg.557]    [Pg.208]    [Pg.317]    [Pg.356]    [Pg.444]    [Pg.41]    [Pg.414]    [Pg.238]    [Pg.512]    [Pg.17]    [Pg.544]    [Pg.21]    [Pg.325]   
See also in sourсe #XX -- [ Pg.7 , Pg.15 ]




SEARCH



Monomer recovery Subject

Subject allyl monomers

Subject vinyl monomers

© 2024 chempedia.info