Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-isobutylene resin

Methyl salicylate has been alkylated with isobutylene and isoamylene on Indion 130, a macroporous sulfonated styrene-divinylbenzene resin with cross-... [Pg.152]

MTBE is commercially produced by the reaction of isobutylene with methanol in the presence of an acidic ion-exchange resin as catalyst, usually in the liquid phase and at temperatures below 100°C. A typical catalyst is sulfonated styrene/divinylbenzene resin catalyst. Other solid acid catalysts such as bentonites are also effective and other novel catalysts have recently been discovered. Isobutylene is obtained from field butane by initial isomerization of n-butane to isobutane, followed by dehydrogenation to isobutylene. Commercial preparations of MTBE are 95.03 to 98.93% pure. Impurities are methanol (<0.43%), t-butyl alcohol (<0.80%), and diisobutylene (<0.25%). [Pg.743]

Sulfonated styrene—divinylbensene cross-linked polymers have been appHed in many of the previously mentioned reactions and also in the acylation of thiophene with acetic anhydride and acetyl chloride (209). Resins of this type (Dowex 50, Amherljte IR-112, and Permutit Q) are particularly effective catalysts in the alkylation of phenols with olefins (such as propylene, isobutylene, diisobutylene), alkyl haUdes, and alcohols (210) (see Ion exchange). Superacids. [Pg.564]

Thermoplastic resins produced from pure monomers such as styrene, alkyl-substituted styrenes, and isobutylene are produced commercially. An advantage of these resins is the fact that they are typically lighter in color than Gardner 1 (water-white) without being hydrogenated. Among the earliest resins in this category were those made from styrene and sold as Piccolastic. Styrene and alkyl-substituted styrenes such as a-methylstyrene are very reactive toward Friedel-Crafts polymerization catalysts. [Pg.355]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

New copolymers based on a copolymerization of isobutylene and p-methyl-styrene with improved heat resistance have been reported [64]. Once copolymerization was accomplished, the polymer was selectively brominated in the p-methyl position to yield a terpolymer called EXXPO. In contrast to butyl and halobutyl, the new terpolymer has no unsaturation in the backbone and therefore shows enhanced thermal stability and resistance to oxidation. Useful solvent-based adhesives can be formulated using the new terpolymer in combination with block copolymers [65]. The hydrocarbon nature of the new terpolymer results in excellent compatibility with hydrocarbon resins and oils. [Pg.653]

MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine-phenol-formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin-modified styrene-acrylonitrile Polyamide Poly(aryl ether-ketone) Poly(amide-imide) Polyacrylonitrile Polybutylene Poly(butadiene-acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene-styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene-dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether-imide) Poly(ether-ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)... [Pg.959]

In view of the wide application of Py—GC in industry and research, the development of techniques and equipment for automatic analysis by this method is of great practical interest. An automatic Py—GC system was developed by Coulter and Thompson [69] for Curie-type cells with a filament for specific application in the tyre industry. A typical analysis involves the identification and determination of polymers in a tyre material sample. The material of a tyre is essentially a mixture of polymers, most often natural rubber (polyisoprene), synthetic polyisoprene, polybutadiene and butadiene-styrene copolymer. A tube is normally made of a material based on butyl rubber and a copolymer of isobutylene with small amounts of isoprene. In addition to the above ingredients, the material contains another ten to twelve, such as sulphur, zinc oxide, carbon black, mineral oil, pine pitch, resins, antioxidants, accelerators and stearic acid. In analysing very small samples of the tyre material, the chemist must usually answer the following question on the basis of which polymers is the tyre made and what is their ratio The problem is not made easier by the fact that cured rubber is not soluble in any solvent. [Pg.98]

Petroleum resins Polyethylene Ethylene oxide polymer Polypropylene carbonate Polytetrafluoroetylene (PTFE) Poly-alpha-methyl styrene Poly isobutylene... [Pg.43]

ESR spectroscopy has been applied to studies of unsaturation and other structural features in a wide range of homopolymers including polyethylene [101-110], polypropylene [111-121], polybutenes [115], polystyrene [122-124], PVC [125,126], polyvinylidene chloride [127], polymethylmethacrylate [128-137], polyethylene glycol polycarbonates [137-140], polyacrylic acid [136-139, 141, 142], polyphenylenes [143], polyphenylene oxides [143], polybutadiene [144], conjugated dienes [145,146], polyester resins [146], cellophane [143,147] and also to various copolymers including styrene grafted polypropylene [148], ethylene-acroline [149], butadiene-isobutylene [150], vinyl acetate copolymers [151] and vinyl chloride-propylene. [Pg.336]

Maleic anhydride grafting (cont.) poly(styrene-co-divinylbenzene), 694 poly(styrene-co-isobutylene), 675, 689 poly(styrene-co-nfialeic anhydride), 676, 679 poly(vinyl acetate), 676, 694 poly(vinyl acetate-co-vinyl fluoride), 678 poly(vinyl alkyl ethers), 675, 679, 692, 701 poly(vinyl chloride), 683, 692, 693, 695, 702 poly(vinylidene chloride), 691 poly(vinyl toluene-co-butadiene), 689 radical—initiated, 459-462, 464-466, 471, 475, 476 radiation—initiated, 459, 461, 466, 471, 474 redox-initiated, 476 rubber, 678, 686, 687, 691, 694 to saturated polymers, 459-466, 475, 476 solvents used 460-463, 465, 466, 469, 474-476 styrene block copolymers, 679 tall oil pitch, 678, 697 terpene polymers, 679, 700 thermally-initiated, 462, 464-467, 469, 476 to unsaturated polymers, 459, 466-474 vapor-phase techniques, 464, 474, 475 to wool fibers, 476 Maleic anhydride monomer acceptor for complex formation, 207-210 acetal copolymerization, 316 acetone CTC thermodynamic constants, 211 acetone photo-adduct pyrolysis, 195, 196 acetylacetone reaction, 235 acetylenic photochemical reactions, 193-196 acrylamide eutectic mixtures, 285 acylation of aromatic acids, 97 acylation of aromatics, 91, 92 acylation of fused aromatics, 92, 95, 97, 98 acylation of olefins, 99 acylation of phenols, 94-96 acylic diene Diels-Alder reactions, 104-111, 139 addition polymer condensations, 503-505 adduct with 2-cyclohexylimino-cyclopentanedi-thiocarboxylic acid, 51 adducts for epoxy resins curing, 507-510 adduct with 2-iminocyclopentanedithiocarboxylic acid, 51... [Pg.844]


See other pages where Styrene-isobutylene resin is mentioned: [Pg.413]    [Pg.413]    [Pg.579]    [Pg.365]    [Pg.131]    [Pg.174]    [Pg.330]    [Pg.124]    [Pg.4801]    [Pg.5458]    [Pg.267]    [Pg.21]    [Pg.8]    [Pg.453]   
See also in sourсe #XX -- [ Pg.413 ]




SEARCH



Isobutylene

Styrenic resins

© 2024 chempedia.info