Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene, catalytic production

Puente et al.33 have studied the conversion of PS dissolved in benzene in a fluidized bed reactor over a commercial FCC catalyst. The product distribution obtained in the catalytic degradation of PS was compared to that obtained in styrene conversion (Figure 5.15). The same relationship between the conversion and the selectivity towards the different products was observed in both PS and styrene catalytic conversion at 550 °C, suggesting that styrene is also the primary product in the catalytic PS cracking. The authors proposed a mechanism to explain the formation of the main products from styrene. [Pg.149]

Recently, the high activity of palladium/NHC complexes in the Heck reaction was combined with an efficient recyclability process [63]. Bis-carbene pincer complexes of palladium(II) were immobilized on montmorillonite K-10. The catalytic activity of the heterogeneous system is similar to that displayed by their homogeneous counterparts. The stability of the catalyst was tested in the reaction of phenyl iodide and styrene. The product yield decreases from 99 to 79% after ten cycles. [Pg.257]

Compared with the numerous developments of catalytic asynunetric reactions with chiral palladium(O) catalysts [ lc,e], catalytic asynunetric reactions by chiral palladium(ll) species have so far received only little attention, hi fact, the enantioselective Fujiwara-Moritani reaction still remains a significant challenge for organic chemists. Little success has been achieved thus far, presumably because of the inherent nature of the reaction, where styrene-type products absent of chiral centres arc typically formed from the -hydride elimination process. [Pg.357]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]

The ethylene feedstock used in most plants is of high purity and contains 200—2000 ppm of ethane as the only significant impurity. Ethane is inert in the reactor and is rejected from the plant in the vent gas for use as fuel. Dilute gas streams, such as treated fluid-catalytic cracking (FCC) off-gas from refineries with ethylene concentrations as low as 10%, have also been used as the ethylene feedstock. The refinery FCC off-gas, which is otherwise used as fuel, can be an attractive source of ethylene even with the added costs of the treatments needed to remove undesirable impurities such as acetylene and higher olefins. Its use for ethylbenzene production, however, is limited by the quantity available. Only large refineries are capable of deUvering sufficient FCC off-gas to support an ethylbenzene—styrene plant of an economical scale. [Pg.478]

The main by-products ia the dehydrogenation reactor are toluene and benzene. The formation of toluene accounts for the biggest yield loss, ie, approximately 2% of the styrene produced when a high selectivity catalyst is used. Toluene is formed mostly from styrene by catalytic reactions such as the foUowiag ... [Pg.481]

Figure 5.4-3 shows the results of a lifetime study for Wilke s catalyst dissolved, activated, and immobilized in the [EMIM][(CF3S02)2N]/compressed CO2 system. Over a period of more than 61 h, the active catalyst showed remarkably stable activity while the enantioselectivity dropped only slightly. These results clearly indicate - at least for the hydrovinylation of styrene with Wilke s catalyst - that an ionic liquid catalyst solution can show excellent catalytic performance in continuous product extraction with compressed CO2. [Pg.287]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

The performance of clay materials (Halloysite, Pyrophyllite, Montmorillonite K-30) in the degradation of polystyrene (PS) was investigated in this study. The catalysts showed good catalytic activity for the degradation of PS with high selectivity to aromatics liquids. Styrene is the major product, and ethylbenzene is the second most abundant one in the liquid product. [Pg.435]

A more practical, atom-economic and environmentally benign aziridination protocol is the use of chloramine-T or bromamine-T as nitrene source, which leads to NaCl or NaBr as the sole reaction by-product. In 2001, Gross reported an iron corrole catalyzed aziridination of styrenes with chloramine-T [83]. With iron corrole as catalyst, the aziridination can be performed rmder air atmosphere conditions, affording aziridines in moderate product yields (48-60%). In 2004, Zhang described an aziridination with bromamine-T as nitrene source and [Fe(TTP)Cl] as catalyst [84]. This catalytic system is effective for a variety of alkenes, including aromatic, aliphatic, cyclic, and acyclic alkenes, as well as cx,p-unsaturated esters (Scheme 28). Moderate to low stereoselectivities for 1,2-disubstituted alkenes were observed indicating the involvement of radical intermediate. [Pg.133]

Most small olefins produced in the chemical industry are used to make polymers, with a global production of the order of 100 million tons per year. Polymers are macromolecules with molecular weights of typically lO" to 10 and consist of linear or branched chains, or networks built up from small monomers such as ethylene, propylene, vinyl chloride, styrene, etc. The vast majority of polymers are made in catalytic processes. Here we concentrate on ethylene polymerization over chromium catalysts as an example [M.P. McDaniel, Adv. Catal. 33 (1985) 47]. [Pg.374]

Figure 5.8 Environmental factors E (top figure) and cost indices Cl (bottom figure) for the biocatalytic (a) and chemical catalytic (b) syntheses of (5)-styrene oxide (Scheme 5.3) including the synthesis of the Jacobsen catalyst and of the bacteria (Scheme 5.4) as further syntheses. Waste produced during biocatalyst synthesis is indicated. However, it has to be considered that biocatalyst and product synthesis cannot be separated. Figure 5.8 Environmental factors E (top figure) and cost indices Cl (bottom figure) for the biocatalytic (a) and chemical catalytic (b) syntheses of (5)-styrene oxide (Scheme 5.3) including the synthesis of the Jacobsen catalyst and of the bacteria (Scheme 5.4) as further syntheses. Waste produced during biocatalyst synthesis is indicated. However, it has to be considered that biocatalyst and product synthesis cannot be separated.
The first example of hydroamination of styrene in the presence of an alkali metal appeared in a patent in 1948, albeit with a low catalytic activity (Eq. 4.30) [149]. The anti-Markovnikov addition product was obtained. [Pg.106]

Alkyl Co oxime complexes have been used as chain transfer catalysts in free radical polymerizations.866,867 Regioselective hydronitrosation of styrene (with NO in DMF) to PhCMe=NOH is catalyzed by Co(dmg)2(py)Cl in 83% yield.868,869 Catalytic amounts of the trivalent Co(dmg2tn)I2 (192) (X = I) generate alkyl radicals from their corresponding bromides under mild reaction conditions, allowing the selective preparation of either saturated or unsaturated radical cyclization products.870... [Pg.73]

Figure 33 The catalytic mechanism for the production of borane-terminated isotactic polypropylene (z-PPs) via in situ chain-transfer reaction by a styrene/hydrogen consecutive chain-transfer reagent allowing the utilization of MAO cocatalyst (50). (Adapted from ref. 74.)... Figure 33 The catalytic mechanism for the production of borane-terminated isotactic polypropylene (z-PPs) via in situ chain-transfer reaction by a styrene/hydrogen consecutive chain-transfer reagent allowing the utilization of MAO cocatalyst (50). (Adapted from ref. 74.)...

See other pages where Styrene, catalytic production is mentioned: [Pg.323]    [Pg.837]    [Pg.68]    [Pg.805]    [Pg.326]    [Pg.500]    [Pg.263]    [Pg.70]    [Pg.167]    [Pg.481]    [Pg.482]    [Pg.177]    [Pg.31]    [Pg.219]    [Pg.101]    [Pg.277]    [Pg.110]    [Pg.250]    [Pg.435]    [Pg.721]    [Pg.124]    [Pg.72]    [Pg.33]    [Pg.218]    [Pg.73]    [Pg.75]    [Pg.109]    [Pg.589]    [Pg.75]    [Pg.19]    [Pg.151]    [Pg.154]    [Pg.162]    [Pg.165]   
See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Styrene Production

© 2024 chempedia.info