Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-acrylonitrile-methacrylate

Dimensional stability Styrene-acrylonitrile, methacrylate-butadiene-styrene... [Pg.347]

Processability Styrene-acrylonitrile, methacrylate-butadiene-styrene, chlorinated polyethylene, PVC-ethyl acrylate, ethylene-vinyl acetate, chlorinated polyoxymethylenes (acetals)... [Pg.347]

SAMA Styrene-acrylonitrile-methacrylic acid copolymer... [Pg.2171]

The combination of durability and clarity and the ability to tailor molecules relatively easily to specific applications have made acryflc esters prime candidates for numerous and diverse applications. At normal temperatures the polyacrylates are soft polymers and therefore tend to find use in applications that require flexibility or extensibility. However, the ease of copolymerizing the softer acrylates with the harder methacrylates, styrene, acrylonitrile, and vinyl acetate, allows the manufacture of products that range from soft mbbers to hard nonfilm-forming polymers. [Pg.171]

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

A third source of initiator for emulsion polymerisation is hydroxyl radicals created by y-radiation of water. A review of radiation-induced emulsion polymerisation detailed efforts to use y-radiation to produce styrene, acrylonitrile, methyl methacrylate, and other similar polymers (60). The economics of y-radiation processes are claimed to compare favorably with conventional techniques although worldwide iadustrial appHcation of y-radiation processes has yet to occur. Use of y-radiation has been made for laboratory study because radical generation can be turned on and off quickly and at various rates (61). [Pg.26]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
Following the success in blending rubbery materials into polystyrene, styrene-acrylonitrile and PVC materials to produce tough thermoplastics the concept has been used to produce high-impact PMMA-type moulding compounds. These are two-phase materials in which the glassy phase consists of poly(methyl methacrylate) and the rubbery phase an acrylate polymer, usually poly(butyl acrylate Commercial materials of the type include Diakon MX (ICI), Oroglas... [Pg.413]

The important features of rigidity and transparency make the material competitive with polystyrene, cellulose acetate and poly(methyl methacrylate) for a number of applications. In general the copolymer is cheaper than poly(methyl methacrylate) and cellulose acetate, tougher than poly(methyl methacrylate) and polystyrene and superior in chemical and most physical properties to polystyrene and cellulose acetate. It does not have such a high transparency or such food weathering properties as poly(methyl methacrylate). As a result of these considerations the styrene-acrylonitrile copolymers have found applications for dials, knobs and covers for domestic appliances, electrical equipment and car equipment, for picnic ware and housewares, and a number of other industrial and domestic applications with requirements somewhat more stringent than can be met by polystyrene. [Pg.441]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

The molecules join together to form a long chain-like molecule which may contain many thousands of ethylene units. Such a molecule is referred to as a polymer, in this case polyethylene, whilst in this context ethylene is referred to as a monomer. Styrene, propylene, vinyl chloride, vinyl acetate and methyl methacrylate are other examples of monomers which can polymerise in this way. Sometimes two monomers may be reacted together so that residues of both are to be found in the same chain. Such materials are known as copolymers and are exemplified by ethylene-vinyl acetate copolymers and styrene-acrylonitrile copolymers. [Pg.914]

SBR (Styrene Butadiene Rubber) ABS (Acrylonitrile Butadiene Styrene Polymethyl methacrylate PAN (Polyacrylonitrile)... [Pg.321]

Styrene acrylonitrile Styrene butadiene Styrene maleic anhydride Styrene methyl methacrylate Thermoplastic urethane, rigid... [Pg.330]

In this work, a comprehensive kinetic model, suitable for simulation of inilticomponent aiulsion polymerization reactors, is presented A well-mixed, isothermal, batch reactor is considered with illustrative purposes. Typical model outputs are PSD, monomer conversion, multivariate distritution of the i lymer particles in terms of numtoer and type of contained active Chains, and pwlymer ccmposition. Model predictions are compared with experimental data for the ternary system acrylonitrile-styrene-methyl methacrylate. [Pg.380]

II. B polyethylene glycol, ethylene oxide, polystyrene, diisocyanates (urethanes), polyvinylchloride, chloroprene, THF, diglycolide, dilac-tide, <5-valerolactone, substituted e-caprolactones, 4-vinyl anisole, styrene, methyl methacrylate, and vinyl acetate. In addition to these species, many copolymers have been prepared from oligomers of PCL. In particular, a variety of polyester-urethanes have been synthesized from hydroxy-terminated PCL, some of which have achieved commercial status (9). Graft copolymers with acrylic acid, acrylonitrile, and styrene have been prepared using PCL as the backbone polymer (60). [Pg.84]

The compositions of copolymers of styrene, methyl methacrylate, acrylonitrile and acrylamide with diethyl vinyl phosphonate (S-DEVP, MMA-DEVP, AN-DEVP and AM-DEVP), with incorporated FR functionality, were analysed by means of 11 1-NMR in CDC13, DMSO-d6 and D20 [217],... [Pg.332]

Creep and relaxation AMS, styrene -acrylonitrile copolymer, poly vinyl chloride), polyfrnclliyl methacrylate)... [Pg.81]

Fig. 56. Dependence of specific refractive index increment on conversion of monomers to polymer for a styrene/acrylonitrile/methyl methacrylate terpolymer in methyl ethyl ketone at 20 °C and 436 nm. (a) - partial azeotrope, (b) terpolymer with composition distribution163 ... Fig. 56. Dependence of specific refractive index increment on conversion of monomers to polymer for a styrene/acrylonitrile/methyl methacrylate terpolymer in methyl ethyl ketone at 20 °C and 436 nm. (a) - partial azeotrope, (b) terpolymer with composition distribution163 ...
The last decades have witnessed the emergence of new living Vcontrolled polymerizations based on radical chemistry [81, 82]. Two main approaches have been investigated the first involves mediation of the free radical process by stable nitroxyl radicals, such as TEMPO while the second relies upon a Kharash-type reaction mediated by metal complexes such as copper(I) bromide ligated with 2,2 -bipyridine. In the latter case, the polymerization is initiated by alkyl halides or arenesulfonyl halides. Nitroxide-based initiators are efficient for styrene and styrene derivatives, while the metal-mediated polymerization system, the so called ATRP (Atom Transfer Radical Polymerization) seems the most robust since it can be successfully applied to the living Vcontrolled polymerization of styrenes, acrylates, methacrylates, acrylonitrile, and isobutene. Significantly, both TEMPO and metal-mediated polymerization systems allow molec-... [Pg.32]

Copolymerizations of nonpolar monomers with polar monomers such as methyl methacrylate and acrylonitrile are especially comphcated. The effects of solvent and counterion may be unimportant compared to the side reactions characteristic of anionic polymerization of polar monomers (Sec. 5-3b-4). In addition, copolymerization is often hindered by the very low tendency of one of the cross-propagation reactions. For example, polystyryl anions easily add methyl methacrylate but there is little tendency for poly(methyl methacrylate) anions to add styrene. Many reports of styrene-methyl methacrylate (and similar comonomer pairs) copolymerizations are not copolymerizations in the sense discussed in this chapter. [Pg.511]

Although this method yields a mixture of homopolymer and graft copolymer, and probably also ungrafted backbone polymer, some of the systems have commercial utility. These are high-impact polystyrene (HIPS) [styrene polymerized in the presence of poly(l,3-buta-diene)], ABS and MBS [styrene-acrylonitrile and methyl methacrylate-styrene, respectively, copolymerized in the presence of either poly(l,3-butadiene) or SBR] (Sec. 6-8a). [Pg.754]

PS (polystyrene), PVC [poly(vinyl chloride)], PC (bisphenol A polycarbonate) PMMA [poly (methyl methacrylate)], PB (polybutadiene), SAN (styrene-acrylonitrile copolymer),NBR (acrylonitrile-butadiene rubber), PPE (polyphenylene ether), SBR (styrene-butadiene rubber)... [Pg.366]

An appropriate formalism for Mark-Houwink-Sakurada (M-H-S) equations for copolymers and higher multispecies polymers has been developed, with specific equations for copolymers and terpolymers created by addition across single double bonds in the respective monomers. These relate intrinsic viscosity to both polymer MW and composition. Experimentally determined intrinsic viscosities were obtained for poly(styrene-acrylonitrile) in three solvents, DMF, THF, and MEK, and for poly(styrene-maleic anhydride-methyl methacrylate) in MEK as a function of MW and composition, where SEC/LALLS was used for MW characterization. Results demonstrate both the validity of the generalized equations for these systems and the limitations of the specific (numerical) expressions in particular solvents. [Pg.263]

In this paper a generalized approach is presented to the derivation of H-H-S equations for multispecies polymers created by addition polymerization across single double bonds in the monomers. The special cases of copolymers and terpolymers are derived. This development is combined with experimental results to evaluate the numerical parameters in the equations for poly(styrene-acrylonitrile ) (SAN) in three separate solvents and for poly(styrene-maleic anhydride-methyl methacrylate) (S/HA/MM) in a single solvent. The three solvents in the case of SAN are dimethyl formamide (DMF), tetrahydrofuran (THF), and methyl ethyl ketone (MEK) and the solvent for S/HA/HH is HER. [Pg.264]

Hamann et al. (11) have prepared phenylazo-bound silica via four-step reactions from the starting silica (Aerosil 200) and carried out the polymerizations of styrene, methyl methacrylate, acrylamide, acrylonitrile, acrylic acid, and 4-vinylpyri-... [Pg.628]

Fig. 23. Polymerization of monomers in masticating polystyrene and polymethyl methacrylate. Curves 1-6 1 ml methacrylic acid, styrene, methyl methacrylate, ethyl acrylate, acrylonitrile, and vinyl acetate, respectively, in 3 g polystyrene. Curves 7-12 2 ml methacrylic acid, methyl methacrylate, acrylonitrile, ethyl acrylate, styrene, and vinyl acetate, respectively, in 3g polymethyl methacrylate. The limiting viscosity numbers for points along Curves 2 and 3... Fig. 23. Polymerization of monomers in masticating polystyrene and polymethyl methacrylate. Curves 1-6 1 ml methacrylic acid, styrene, methyl methacrylate, ethyl acrylate, acrylonitrile, and vinyl acetate, respectively, in 3 g polystyrene. Curves 7-12 2 ml methacrylic acid, methyl methacrylate, acrylonitrile, ethyl acrylate, styrene, and vinyl acetate, respectively, in 3g polymethyl methacrylate. The limiting viscosity numbers for points along Curves 2 and 3...

See other pages where Styrene-acrylonitrile-methacrylate is mentioned: [Pg.326]    [Pg.34]    [Pg.75]    [Pg.326]    [Pg.34]    [Pg.75]    [Pg.411]    [Pg.412]    [Pg.84]    [Pg.134]    [Pg.441]    [Pg.219]    [Pg.160]    [Pg.869]    [Pg.391]    [Pg.399]    [Pg.224]    [Pg.285]    [Pg.199]    [Pg.490]    [Pg.518]    [Pg.530]    [Pg.755]    [Pg.677]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Methacrylic styrene

STYRENE-ACRYLONITRILE

© 2024 chempedia.info