Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exfoliated structure

There are two basic types of nanocomposites, in which particles are intercalated or exfoliated. In an intercalated composite the nanodispersed filler still consists of ordered structures of smaller individual particles, packed into intercalated structures. Exfoliated particles are those dispersed into practically individual units, randomly distributed in the composite. Layered silicates, such as montmorillonite clays or organoclays, can be used in nanocomposites. Because clays are hydrophilic and polyolefines are hydrophobic, it is not easy to make a nanocomposite based on polyethylene or polypropylene because of their natural incompatibility. [Pg.154]

Three main types of structures, which are shown in Fig. 5.3, can be obtained when a clay is dispersed in a polymer matrix (1) phase-separated structure, where the polymer chains did not intercalate the clay layers, leading to a structure similar to those of a conventional composite, (2) intercalated structure, where the polymer chains are intercalated between clay layers, forming a well ordered multilayer structure, which has superior properties to those of a conventional composite, and (3) structure exfoliated, where the clay is completely and uniformly dispersed in a polymeric matrix, maximizing the interactions polymer-clay and leading to significant improvements in physical and mechanical properties [2, 50-52]. Production of nanocomposites based on polymer/clay can be done basically in three ways (a) in situ polymerization, (b) prepared in solution and (c) preparation of the melt or melt blending [53]. [Pg.165]

Exfoliation corrosion is especially prevalent in aluminum alloys. The grain structure of the metal determines whether exfoliation corrosion will occur. In this form of corrosion, degradation propagates below the surface of the metal. Corrosion products in layers below the metal surface cause flaking of the metal. [Pg.15]

Schieferung, /. scaling off, exfoliation schist-osity, foliated structure. [Pg.386]

Vermiculite is a naturally occurring group of hydrated aluminum-iron-magnesium silicates having a laminate structure. When subjected to direct heat in a furnace, the pulverized material exfoliates or expands in size, and then consists of a series of parallel plates with air spaces between. [Pg.122]

TEG macrostructure differs from that of natural graphite it possesses abnormally high porosity and highly developed active surface (40-50 m2/g) (Figure 1). The performed thermochemical treatment leads to an essential exfoliation of graphite matrix with a formation of cellular structure. The thickness of cell s walls is equal to 20-25 nm. The surface of cell s walls contains a lot of macrocracks, outcrops of crystallites, etc. The thermochemical re-treatment was applied to enhance TEG dispersivity. [Pg.359]

TEG structure refinement has distinctly observed in electron microscopy studies of the oxidized TEG powders subjected to the repeated thermal shock. In this case the size of TEG macropores was equal to 1.5-2 pm that is essentially lower that for source TEG. Figure 2 presents SEM images of the source TEG particle (a) and TEG particle oxidized by sulfuric acid and re-exfoliated at 800°C (b). [Pg.360]

Layered materials are of special interest for bio-immobilization due to the accessibility of large internal and external surface areas, potential to confine biomolecules within regularly organized interlayer spaces, and processing of colloidal dispersions for the fabrication of protein-clay films for electrochemical catalysis [83-90], These studies indicate that layered materials can serve as efficient support matrices to maintain the native structure and function of the immobilized biomolecules. Current trends in the synthesis of functional biopolymer nano composites based on layered materials (specifically layered double hydroxides) have been discussed in excellent reviews by Ruiz-Hitzky [5] and Duan [6] herein we focus specifically on the fabrication of bio-inorganic lamellar nanocomposites based on the exfoliation and ordered restacking of aminopropyl-functionalized magnesium phyllosilicate (AMP) in the presence of various biomolecules [91]. [Pg.248]

Most nanocomposite researchers obdurately believe that the preparation of a completely exfoliated structure is the ultimate target for better overall properties. However, these significant improvements are not observed in every nanocomposite system, including systems where the silicate layers are near to exfoliated [29]. While, from the barrier property standpoint, the development of exfoliated nanocomposites is always preferred, Nylon 6-based nanocomposite systems are completely different from other nanocomposite systems, as discussed [3,8]. [Pg.282]

Clay minerals or phyllosilicates are lamellar natural and synthetic materials with high surface area, cation exchange and swelling properties, exfoliation ability, variable surface charge density and hydrophobic/hydrophilic character [85], They are good host structures for intercalation or adsorption of organic molecules and macromolecules, particularly proteins. On the basis of the natural adsorption of proteins by clay minerals and various clay complexes that occurs in soils, many authors have investigated the use of clay and clay-derived materials as matrices for the immobilization of enzymes, either for environmental chemistry purpose or in the chemical and material industries. [Pg.454]

It is well know that the zeolite materials synthesized in alkaline systems usually have a high number of silanol groups (=SiOH) named defect groups [10] which possess a moderated Bronsted acidity [11]. Oppositely, Silicalite-1 synthesized in fluorine media are relatively defect-free [12] and the fluorine ions remain in the small cages of the MFI structure even after the calcination process [12]. The 29Si-NMR analyses carried out on samples Na-Silicalite-1 and F-Silicalite-1 confirm the presence of silanol groups only on the SI support surface (results not showed). Delaminated zeolites (ITQ-6) are obtained by exfoliation of as-synthesized lamellar precursor zeolites [13]. After this process, the final structure of the delaminated zeolite results in a completely hydroxylated and well-ordered external surface [13]. [Pg.259]

Graphite (a) molecular structure and (b) SEM micrographs after exfoliation. (Figure 12.5b reproduced from website www.electronics-cooling.com/assets/images/, February 2007 Inagaki, M., and Suwa, T., Carbon, 39, 915-920,2001. With permission.)... [Pg.416]

Surfactants are therefore effective solubilizers that can exfoliate CNTs by physical adsorption, which occurs at interfaces, allowing self-assembling into supramolecular structures [50]. [Pg.55]


See other pages where Exfoliated structure is mentioned: [Pg.2098]    [Pg.352]    [Pg.573]    [Pg.2098]    [Pg.352]    [Pg.573]    [Pg.46]    [Pg.676]    [Pg.179]    [Pg.434]    [Pg.26]    [Pg.31]    [Pg.37]    [Pg.48]    [Pg.788]    [Pg.655]    [Pg.669]    [Pg.646]    [Pg.118]    [Pg.216]    [Pg.218]    [Pg.219]    [Pg.285]    [Pg.299]    [Pg.444]    [Pg.445]    [Pg.247]    [Pg.252]    [Pg.253]    [Pg.281]    [Pg.282]    [Pg.284]    [Pg.461]    [Pg.418]    [Pg.434]    [Pg.206]    [Pg.366]    [Pg.292]    [Pg.306]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Exfoliants

Exfoliate

Exfoliating

Exfoliation

Exfoliators

© 2024 chempedia.info