Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clays complexants

Similar molecular weight poly(DMA-co-EPl), 1750 daltons, ca. 13 repeat units, and poly(TMDAB-co-DCB), 1500 daltons, ca. 11 repeat units were compared. The two condensation polymers appeared to be about equally effective in preventing the swelling of Wyoming bento-nite. Any small differences are probably due to repeat unit chemical structure differences rather than the small variations in polymer molecular weight. The presence of the hydroxyl group and the smaller N - N distance in poly(DMA-co-EPl) could affect polymer conforma-tion in solution, geometry of the polymer - clay complex, and surface properties of the polymer - clay complex as compared to poly(TMDAB-co-DCB). [Pg.214]

Clay minerals or phyllosilicates are lamellar natural and synthetic materials with high surface area, cation exchange and swelling properties, exfoliation ability, variable surface charge density and hydrophobic/hydrophilic character [85], They are good host structures for intercalation or adsorption of organic molecules and macromolecules, particularly proteins. On the basis of the natural adsorption of proteins by clay minerals and various clay complexes that occurs in soils, many authors have investigated the use of clay and clay-derived materials as matrices for the immobilization of enzymes, either for environmental chemistry purpose or in the chemical and material industries. [Pg.454]

Cowan CT, White D (1962) Adsorption by organo-clay complexes. Clays Clay Miner 9 459-467... [Pg.170]

Khan, S.U. Adsorption of 2,4-D from aqueous solution by fulvic acid-clay complex. Environ. Sci. Technol, 8(3) 236-238, 1974. [Pg.1678]

Pinck L.A., W.E. Holton, and E.E. Allison (1961a). Antibiotics in soil 1. Physico-chemical studies of antibiotic-clay complexes. Soil Science 91 22-28. [Pg.280]

In the past the mineral matrix was considered as inert, only providing stabilization support for enzymes and humic substances however, due to the overwhelming amount of evidence at the molecular level, there is no doubt that minerals participate in abiotic catalysis of humification reactions in soils. Naidja et al. (2000) referred to mineral particles as the Hidden Half of enzyme-clay complexes, which not only prolong the activity of immobilized enzymes but also are readily able to participate in electron transfer reactions. Many environmental factors can negatively affect the... [Pg.92]

Figure 3.5. (A) JH NMR spectrum of the Brooksville fulvic acid (BFA) dissolved in d6-DMSO and (B) HR-MAS NMR spectrum of the BFA-clay complex swollen in g 6-DMSO. Inset shows that lower abundance aromatic species are present in the spectrum in part B. Reprinted from Simpson, A. I, Simpson, M. I, Kingery, W. L., Lefebvre, B. A., Moser, A., Williams, A. I, Kvasha, M., and Kelleher, B. R (2006). The application of 1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir 22,4498 1503, with permission from the American Chemical Society. Figure 3.5. (A) JH NMR spectrum of the Brooksville fulvic acid (BFA) dissolved in d6-DMSO and (B) HR-MAS NMR spectrum of the BFA-clay complex swollen in g 6-DMSO. Inset shows that lower abundance aromatic species are present in the spectrum in part B. Reprinted from Simpson, A. I, Simpson, M. I, Kingery, W. L., Lefebvre, B. A., Moser, A., Williams, A. I, Kvasha, M., and Kelleher, B. R (2006). The application of 1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir 22,4498 1503, with permission from the American Chemical Society.
Rebhun, M., Kalabo, R., Grossman, L., Manka, J., and Rav-Acha, C. (1992). Sorption of organics on clay and synthetic humic-clay complexes simulating aquifer processes. Water Res. 26,79-84. [Pg.141]

Figure 5.3. A humic acid macromolecule interacting with a surface of a clay mineral. The proposed macromolecular structure of the soil humic acid (HA) is based on the following common average characteristics of humic acids MW 6386 Da elemental analysis (%) C, 53.9 N, 5.0 H, 5.8 0,35.1 S, 0.5 C/N, 10.7 NMR information (%) aliphatic C, 18.1 aromatic C, 20.9 carbohydrate C, 23.7 metoxy C, 4.9 carboxylic C, 8.4 ketone C, 4.5 phenolic C, 4.2 functional groups (cmol/g) carboxyl, 376 phenol, 188 total acidity, 564. The structure was created using the ACD/ChemSketch program. [HA-clay complex Chen s group, unpublished (2008). Individual HA molecule Grinhut et al., 2007.]... Figure 5.3. A humic acid macromolecule interacting with a surface of a clay mineral. The proposed macromolecular structure of the soil humic acid (HA) is based on the following common average characteristics of humic acids MW 6386 Da elemental analysis (%) C, 53.9 N, 5.0 H, 5.8 0,35.1 S, 0.5 C/N, 10.7 NMR information (%) aliphatic C, 18.1 aromatic C, 20.9 carbohydrate C, 23.7 metoxy C, 4.9 carboxylic C, 8.4 ketone C, 4.5 phenolic C, 4.2 functional groups (cmol/g) carboxyl, 376 phenol, 188 total acidity, 564. The structure was created using the ACD/ChemSketch program. [HA-clay complex Chen s group, unpublished (2008). Individual HA molecule Grinhut et al., 2007.]...

See other pages where Clays complexants is mentioned: [Pg.28]    [Pg.656]    [Pg.391]    [Pg.79]    [Pg.171]    [Pg.383]    [Pg.220]    [Pg.246]    [Pg.417]    [Pg.111]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.124]    [Pg.126]    [Pg.127]    [Pg.128]    [Pg.130]    [Pg.131]    [Pg.132]    [Pg.134]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.380]   


SEARCH



Adsorption organo-clay complexes

Alkylammonium clay complexes

Clay ammonia complexes

Clay complexes

Clay complexes Hydrogen bonding

Clay complexes Synthetic

Clay complexes arenes

Clay complexes macrocycles

Clay complexes mechanisms

Clay complexes neutral organic molecules

Clay complexes organic cations

Clay organic complexes

Clay-Energetic Compound Complexes

Clay-humus complex

Clay-metal-humus complexes

Clays organo-clay complexes

Clays organoclay complexes

Drug-clay complexes

Ferric chloride-clay complexation

Organic complexes with clay minerals

Organic complexes with clay minerals cations

Photoprocesses in Clay-Organic Complexes

Porphyrin-clay complexes, thermal

Porphyrin-clay complexes, thermal analysis

Thermal analysis of porphyrin-clay complexes

© 2024 chempedia.info