Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clays proteins

HARTER R.D. and STOTSKY G. 1971. Formation of clay-protein complexes. Soil Science Society of America Proceedings, 35, 383-389. [Pg.322]

Esterman, E. F., G. H. Peterson, and A. D. McLaren, 1959. Digestion of clay-protein, lignin-protein and silica-protein complexes by enzymes and bacteria. Soli Sci. Soc. Am. Proc. 23 31. [Pg.423]

Apphcations include ka olin clay dewatering, separation of fish oils from press Hquor, starch and gluten concentration, clarification of wet-process phosphoric acid, tar sands, and concentrations of yeast, bacteria, and fungi from growth media in protein synthesis (14). [Pg.411]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

Electroultrafiltration has been demonstrated on clay suspensions, electrophoretic paints, protein solutions, oil—water emulsions, and a variety of other materials. Flux improvement is proportional to the appHed electric field E up to some field strength E where particle movement away from the membrane is equal to the Hquid flow toward the membrane. There is no gel-polarization layer and (in theory) flux equals the theoretical permeate flux. It... [Pg.299]

Adhesives. Clays, especially kaolin and attapulgite, are widely used in various adhesive formulations. Adhesives (qv) containing clays can be derived from natural products such as starch or protein, or be whoUy synthetic, eg, latex, hot melt, emulsion, etc. [Pg.210]

In 1963, Armin Weiss (then at the University of Heidelberg, Germany) reported the intercalation of amino acids and proteins in mica sheet silicates (Weiss, 1963). Some years later, U. Hoffmann, also from Heidelberg, published an article titled Die Chemie der Tonmineralien (The Chemistry of Clay Minerals), in which he mentioned possible catalytic activity of clays in processes which could have led to the emergence of life (Hoffmann, 1968). [Pg.181]

When supported complexes are the catalysts, two types of ionic solid were used zeolites and clays. The structures of these solids (microporous and lamellar respectively) help to improve the stability of the complex catalyst under the reaction conditions by preventing the catalytic species from undergoing dimerization or aggregation, both phenomena which are known to be deactivating. In some cases, the pore walls can tune the selectivity of the reaction by steric effects. The strong similarities of zeolites with the protein portion of natural enzymes was emphasized by Herron.20 The protein protects the active site from side reactions, sieves the substrate molecules, and provides a stereochemically demanding void. Metal complexes have been encapsulated in zeolites, successfully mimicking metalloenzymes for oxidation reactions. Two methods of synthesis of such encapsulated/intercalated complexes have been tested, as follows. [Pg.447]

Layered materials are of special interest for bio-immobilization due to the accessibility of large internal and external surface areas, potential to confine biomolecules within regularly organized interlayer spaces, and processing of colloidal dispersions for the fabrication of protein-clay films for electrochemical catalysis [83-90], These studies indicate that layered materials can serve as efficient support matrices to maintain the native structure and function of the immobilized biomolecules. Current trends in the synthesis of functional biopolymer nano composites based on layered materials (specifically layered double hydroxides) have been discussed in excellent reviews by Ruiz-Hitzky [5] and Duan [6] herein we focus specifically on the fabrication of bio-inorganic lamellar nanocomposites based on the exfoliation and ordered restacking of aminopropyl-functionalized magnesium phyllosilicate (AMP) in the presence of various biomolecules [91]. [Pg.248]

The biochemical activity and accessibility of biomolecule-intercalated AMP clays to small molecules was retained in the hybrid nanocomposites. For example, the absorption spectrum of the intercalated Mb-AMP nanocomposite showed a characteristic soret band at 408 nm associated with the intact prosthetic heme group of the oxidised protein (Fe(III), met-myoglobin) (Figure 8.9). Treatment of Mb with sodium dithionite solution resulted in a red shift of the soret band from 408 to 427 nm, consistent with the formation of intercalated deoxy-Mb. Reversible binding of CO under argon to the deoxy-Mb-AMP lamellar nanocomposite was demonstrated by a shift in the soret band from 427 to 422 nm. Subsequent dissociation of CO from the heme centre due to competitive 02 binding shifted the soret band to 416nm on formation of intercalated oxy-Mb. [Pg.250]

Zhou, Y., Hu, N., Zeng, Y. and Rusling, J.F. (2002) Heme protein-clay films Direct electrochemistry and electrochemical catalysis. Langmuir, 18, 211-219. [Pg.267]

Clay minerals or phyllosilicates are lamellar natural and synthetic materials with high surface area, cation exchange and swelling properties, exfoliation ability, variable surface charge density and hydrophobic/hydrophilic character [85], They are good host structures for intercalation or adsorption of organic molecules and macromolecules, particularly proteins. On the basis of the natural adsorption of proteins by clay minerals and various clay complexes that occurs in soils, many authors have investigated the use of clay and clay-derived materials as matrices for the immobilization of enzymes, either for environmental chemistry purpose or in the chemical and material industries. [Pg.454]

The entrapment of various enzymes and proteins by clay minerals proceeds by weak interactions including electrostatic interactions, hydrogen and van der Waals bonding. Additivity of these various attractive forces renders the adsorption irreversible in some cases, but usually a leaching of enzyme is observed under working conditions. In order to fix the enzyme irreversibly at the surface of the clay layers different processes have been tried. In order to fix invertase on bentonite, Monsan and Durand [90] previously treated the clay mineral with a coupling agent,... [Pg.455]


See other pages where Clays proteins is mentioned: [Pg.451]    [Pg.119]    [Pg.682]    [Pg.6413]    [Pg.89]    [Pg.129]    [Pg.451]    [Pg.119]    [Pg.682]    [Pg.6413]    [Pg.89]    [Pg.129]    [Pg.207]    [Pg.199]    [Pg.337]    [Pg.332]    [Pg.271]    [Pg.359]    [Pg.264]    [Pg.144]    [Pg.253]    [Pg.531]    [Pg.70]    [Pg.98]    [Pg.4]    [Pg.17]    [Pg.244]    [Pg.248]    [Pg.249]    [Pg.249]    [Pg.250]    [Pg.252]    [Pg.255]    [Pg.449]    [Pg.456]    [Pg.457]    [Pg.460]    [Pg.461]    [Pg.563]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



© 2024 chempedia.info