Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural information techniques

NMR Nuclear (proton) rotation Most structurally informative technique Costly and requires considerable infrastructure Only low-field instruments suitable... [Pg.236]

Section 13 19 2D NMR techniques are enhancements that are sometimes useful m gam mg additional structural information A H H COSY spectrum reveals which protons are spin coupled to other protons which helps m deter mining connectivity A HETCOR spectrum shows the C—H connections by correlating C and H chemical shifts... [Pg.577]

Present day techniques for structure determination in carbohydrate chemistry are sub stantially the same as those for any other type of compound The full range of modern instrumental methods including mass spectrometry and infrared and nuclear magnetic resonance spectroscopy is brought to bear on the problem If the unknown substance is crystalline X ray diffraction can provide precise structural information that m the best cases IS equivalent to taking a three dimensional photograph of the molecule... [Pg.1052]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

This chapter contains articles on six techniques that provide structural information on surfaces, interfeces, and thin films. They use X rays (X-ray diffraction, XRD, and Extended X-ray Absorption Fine-Structure, EXAFS), electrons (Low-Energy Electron Diffraction, LEED, and Reflection High-Energy Electron Diffraction, RHEED), or X rays in and electrons out (Surfece Extended X-ray Absorption Fine Structure, SEXAFS, and X-ray Photoelectron Diffraction, XPD). In their usual form, XRD and EXAFS are bulk methods, since X rays probe many microns deep, whereas the other techniques are surfece sensitive. There are, however, ways to make XRD and EXAFS much more surfece sensitive. For EXAFS this converts the technique into SEXAFS, which can have submonolayer sensitivity. [Pg.193]

The techniques can be broadly classified into two groups those which directly identify the atomic species present and then provide structural information about the identified species from diffraction or scattering effects (EXAFS, SEXAFS, and XPD) and those which are purely diffraction-based and do not direcdy identify the atoms involved, but give long-range order information on atomic positions from... [Pg.193]

The advantages of SEXAFS/NEXAFS can be negated by the inconvenience of having to travel to synchrotron radiation centers to perform the experiments. This has led to attempts to exploit EXAFS-Iike phenomena in laboratory-based techniques, especially using electron beams. Despite doubts over the theory there appears to be good experimental evidence that electron energy loss fine structure (EELFS) yields structural information in an identical manner to EXAFS. However, few EELFS experiments have been performed, and the technique appears to be more raxing than SEXAFS. [Pg.231]

Raman spectroscopy is a very convenient technique for the identification of crystalline or molecular phases, for obtaining structural information on noncrystalline solids, for identifying molecular species in aqueous solutions, and for characterizing solid—liquid interfaces. Backscattering geometries, especially with microfocus instruments, allow films, coatings, and surfaces to be easily measured. Ambient atmospheres can be used and no special sample preparation is needed. [Pg.440]

As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

Contributions in this section are important because they provide structural information (geometries, dipole moments, and rotational constants) of individual tautomers in the gas phase. The molecular structure and tautomer equilibrium of 1,2,3-triazole (20) has been determined by MW spectroscopy [88ACSA(A)500].This case is paradigmatic since it illustrates one of the limitations of this technique the sensitivity depends on the dipole moment and compounds without a permanent dipole are invisible for MW. In the case of 1,2,3-triazole, the dipole moments are 4.38 and 0.218 D for 20b and 20a, respectively. Hence the signals for 20a are very weak. Nevertheless, the relative abundance of the tautomers, estimated from intensity measurements, is 20b/20a 1 1000 at room temperature. The structural refinement of 20a was carried out based upon the electron diffraction data (Section V,D,4). [Pg.46]

Neutron diffraction is one of the most widely used techniques for the study of liquid structure. In the experiment, neutrons are elastically scattered off the nuclei in the sample and are detected at different scattering angles, typically 3° to 40°, for the purpose of measuring intermolecular structure whilst minimizing inelasticity corrections. The resultant scattering profile is then analyzed to provide structural information. [Pg.127]

At its simplest, mass spectrometry (MS) is a technique for measuring the mass, and therefore the molecular weight (MW), of a molecule. In addition, it s often possible to gain structural information about a molecule by measuring the masses of the fragments produced when molecules are broken apart. [Pg.409]

Whereas XRD patterns of the thin crystalline films provide information on the orientation and lattice distances perpendicular to the substrate, AFM has proven to be a powerful technique for obtaining structural information of thin-lilm surfaces of conjugated materials 195 j. AFM imaging of the surface of a thin (10 nm) annealed film of Ooct-OFV5 confirmed the domain structure of the annealed Ooct-... [Pg.308]

Infrared spectroelectrochemical methods, particularly those based on Fourier transform infrared (FTIR) spectroscopy can provide structural information that UV-visible absorbance techniques do not. FTIR spectroelectrochemistry has thus been fruitful in the characterization of reactions occurring on electrode surfaces. The technique requires very thin cells to overcome solvent absorption problems. [Pg.44]

Various destructive and non-destructive methods of analysis have been tested and H-l and C-13 NMR have, among other techniques provided valuable structural information on soluble humic acids and fulvic acids 48, Humin, on the other hand has withstood detailed non-destructive analysis. [Pg.17]

The lamella and spherulitic structures can be studied using electron microscopy. The most informative technique is TEM, although a more recently developed... [Pg.163]

The X-ray absorption fine structure (XAFS) methods (EXAFS and X-ray absorption near-edge structure (XANES)) are suitable techniques for determination of the local structure of metal complexes. Of these methods, the former provides structural information relating to the radial distribution of atom pairs in systems studied the number of neighboring atoms (coordination number) around a central atom in the first, second, and sometimes third coordination spheres the... [Pg.356]

X-ray diffraction is a technique that has conventionally been applied to solids to determine the atomic arrangements. It has been used to find out structural information on linear polymers, and has allowed the structure of both crystalline and non-crystalline to be determined. More recently, the technique has been used on dendrimers. [Pg.140]

The ionization techniques most widely used for LC-MS, however, are termed soft ionization in that they produce primarily molecular species with little fragmentation. It is unlikely that the molecular weight alone will allow a structural assignment to be made and it is therefore desirable to be able to generate structural information from such techniques. There are two ways in which this may be done, one of which, the so-called cone-voltage or in-source fragmentation, is associated specifically with the ionization techniques of electiospray and APCl and is discussed later in Section 4.7.4. The other, termed mass spectrometry-mass spectrometry (MS-MS) or tandem mass spectrometry, is applicable to all forms of ionization, provided that appropriate hardware is available, and is described here. [Pg.62]

In this chapter, the main aspects of mass spectrometry that are necessary for the application of LC-MS have been described. In particular, the use of selected-ion monitoring (SIM) for the development of sensitive and specific assays, and the use of MS-MS for generating structural information from species generated by soft ionization techniques, have been highlighted. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated. [Pg.89]


See other pages where Structural information techniques is mentioned: [Pg.255]    [Pg.255]    [Pg.417]    [Pg.96]    [Pg.616]    [Pg.663]    [Pg.154]    [Pg.297]    [Pg.522]    [Pg.228]    [Pg.245]    [Pg.167]    [Pg.70]    [Pg.253]    [Pg.280]    [Pg.298]    [Pg.353]    [Pg.49]    [Pg.223]    [Pg.228]    [Pg.238]    [Pg.240]    [Pg.253]    [Pg.228]    [Pg.23]    [Pg.522]    [Pg.30]    [Pg.141]    [Pg.40]    [Pg.45]   
See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 ]




SEARCH



Structural information

Structural information structure

Structural information surface topography techniques

Structural information, experimental techniques

Structure information

© 2024 chempedia.info