Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress bulk materials

An important point should be addressed here with regard to the Young s modulus, Y, of a bulk material. It together with a measure of the ratio of the longitudinal strain to the lateral strain in a stressed bulk material, the so-called Poisson s ratio, a, can be used to calculate, in principle, all the elastic constants of a bulk material, including the bulk modulus, B, to be discussed in Table 1 [5]. [Pg.93]

Atomic structure refinements or determinations and residual stress measurements, all in bulk materials... [Pg.49]

Strained set of lattice parameters and calculating the stress from the peak shifts, taking into account the angle of the detected sets of planes relative to the surface (see discussion above). If the assumed unstrained lattice parameters are incorrect not all peaks will give the same values. It should be borne in mind that, because of stoichiometry or impurity effects, modified surface films often have unstrained lattice parameters that are different from the same materials in the bulk form. In addition, thin film mechanical properties (Young s modulus and Poisson ratio) can differ from those of bulk materials. Where pronounced texture and stress are present simultaneously analysis can be particularly difficult. [Pg.217]

It must be stressed, however, that the whole object may be the analytical sample, e.g. a specimen of moon-rock. Ideally this sample would be analysed by non-destructive methods. Occasionally the bulk material may be homogeneous (some water samples) and then only one increment may be needed to determine the properties of the bulk. This increment should be of suitable size to provide samples for replicate analyses. [Pg.151]

In the unstressed state the molecules of an elastomer adopt a more-or-less randomly coiled configuration. When the elastomer is subjected to stress the bulk material experiences a significant deformation, as the macromolecules adopt an extended configuration. When the stress is removed, the molecules revert to their equilibrium configurations, as before, and the material returns to its undeformed dimensions. [Pg.111]

How does the shear stress travel from the contact layer of a fluid into the bulk material ... [Pg.131]

It was the objective of this work to investigate the effect of variation in block architecture (number and the order of the blocks) on the crystallinity level, morphology, the stress-strain and hysteresis behavior of this series of polymers. In addition, the composition ratio of the two block types is expected to play a crucial role in determining the bulk material properties of the block copolymers. This is related to the fact that the mechanical properties of block copolymer are typically influenced more substantially by the behavior of the continuous phase, as will be demonstrated.(1,22)... [Pg.122]

The very sharp linewidths observed in bulk materials allow uniaxial stress experiments to be performed, the result of which leads to the identification of the microscopic structures of some of the centers observed in bulk and implanted materials. These results will be discussed in the next part of this chapter. [Pg.506]

Although a mechanism for stress relaxation was described in Section 1.3.2, the Deborah number is purely based on experimental measurements, i.e. an observation of a bulk material behaviour. The Peclet number, however, is determined by the diffusivity of the microstructural elements, and is the dimensionless group given by the timescale for diffusive motion relative to that for convective or flow. The diffusion coefficient, D, is given by the Stokes-Einstein equation ... [Pg.9]

The ultrasonic vibration of 20 kHz applies an intermittent force to the material to be cut and generates a crack (cut) at the tip, controlling its propagation or growth thereby minimising the stress on the bulk material. [Pg.13]

Among the most often used stress measurement methods for crystalline films is determination of the change in interplanar spacing of the crystallites in the film by x-ray diffraction. X-ray determination of near-surface strain and stress in bulk materials has a long history, dating back to the very early period of x-ray powder diffraction measurements and is a well-established technique. [Pg.232]

In bulk material, the resistivity is independent of crystal orientation because silicon is cubic. However, if the carriers are constrained to travel in a very thin sheet, eg, in an inversion layer, the mobility, and thus the resistivity, become anisotropic (18). Mobility is also sensitive to both hydrostatic pressure and uniaxial tension and compression, which gives rise to a substantial piezoresistive effect. Because of crystal symmetry, however, there is no piezoelectric effect. The resistivity gradually decreases as hydrostatic pressure is increased, and then abrupdy drops several orders of magnitude at ca 11 GPa (160,000 psi), where a phase transformation occurs and silicon becomes a metal (35). The longitudinal piezoresistive coefficient varies with the direction of stress, the impurity concentration, and the temperature. At about 25°C, given stress in a (100) direction and resistivities of a few hundredths of an O-cm, the coefficient values are 500—600 m2/N (50—60 cm2/dyn). [Pg.531]

In Fig. 5.4 results are plotted, as obtained by Tsvetkov, Garmonova and Stankevich (166) on solutions of linear oligomers of polyoxy-propylene glycol in cyclohexanol at 20° C (full circles). For comparison the ratio of birefringence and shear stress as obtained in the limit of zero shear stress on the bulk oligomers, are inserted (open squares). [Cf. the definition of [ ]/[ ] by eq. (2.33)]. As these bulk materials form viscous... [Pg.272]

The use of a rotating vane has become very popular as a simple to use technique that allows slip to be overcome (33,34). Alderman et al (35) used the vane method to determine the yield stress, yield strain and shear modulus of bentonite gels. In the latter work it is interesting to note that a typical toique/time plot exhibits a maximum torque (related to yield stress of the sample) after which the torque is observed to decrease with time. The fall in torque beyond the maximum point was described loosely as being a transition from a gel-like to a fluid-like behavior. However, it may also be caused by the development of a slip surface within the bulk material. Indeed, by the use of the marker line technique, Plucinski et al (15) found that in parallel plate fixtures and in slow steady shear motion, the onset of slip in mayonnaises coincided with the onset of decrease in torque (Fig. 8). These authors found slip to be present for... [Pg.289]

A close connection exists between the presence of a flexible polymer skeleton and the flexibility of the bulk material. Macromolecular flexibility is often defined in terms of the glass-transition temperature, Tg. Below this temperature, the polymer is a glass, and the backbone bonds have insufficient thermal energy to undergo significant torsional motions. As the temperature is raised above the Y g, an onset of torsional motion occurs, such that individual molecules can now twist and yield to stress and strain. In this state the polymer is a quasi-liquid (an elastomer) unless the bulk material is stiffened by microcrystalfite formation. Thus, a polymer with a high Tt is believed to have a backbone that offers more resistance to bond torsion than a polymer with a low 7 g. [Pg.106]

There are two main techniques used to measure the fracture toughness of ceramics fracture stress and hardness indentation. The former measures the load to fracture of a pre-cracked specimen using a single edge notched beam (SENB) or a chevron notched beam (CNB) sample. The main drawback of this technique is ensuring that the crack tip is atomically sharp. The second method uses the crack formed at the corners of the indentation produced during a Vickers indentation hardness test. This technique is rapid and relatively inexpensive. However, the toughness values measured are those of the surface, unlike the values obtained by fracture of the pre-cracked beams which are a measure of the bulk material properties. [Pg.46]

The measurement of residual stresses is usually associated with the analysis of mechanical properties, and not microstructure. However, residual stress fields in nanocomposites depend directly on microstructural parameters (particle size, position and spacing), as well as bulk material properties, such as differences in the coefficient of thermal expansion. [Pg.299]

Considering the equilibrium of a stable arch, show that the minimum diameter of the orifice in a conical hopper, d,ma, which is defined to account for the arching, can be related to the unconfined yield stress of the bulk material by the relation... [Pg.370]

Bulk material properties can be determined quite simply using this model. For example, consider the calculation of the second-moment tensor, Q = (u u ), which is required for the stress and refractive index tensors. Using the independent alignment approximation, we have... [Pg.131]

Dentin constitutes the bulk material of all vertebrate teeth. The outer working surface of a vertebrate tooth is composed of a much stiffer material called enamel, or in the case of fish, enameloid [6]. The two materials work together during mastication to provide the tooth with its functional properties [33]. In general the softer dentin functions in distributing and absorbing the compressive stress that is transmitted through the outer enamel layer [26],... [Pg.15]


See other pages where Stress bulk materials is mentioned: [Pg.1793]    [Pg.554]    [Pg.531]    [Pg.512]    [Pg.77]    [Pg.142]    [Pg.3]    [Pg.533]    [Pg.272]    [Pg.6]    [Pg.231]    [Pg.96]    [Pg.10]    [Pg.191]    [Pg.554]    [Pg.1611]    [Pg.290]    [Pg.426]    [Pg.151]    [Pg.206]    [Pg.342]    [Pg.80]    [Pg.99]    [Pg.228]    [Pg.512]    [Pg.2]    [Pg.133]    [Pg.261]    [Pg.267]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Bulk materials

Bulk stress

Stress material

© 2024 chempedia.info