Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strain irreversible

The polymerizations of tetrahydrofuran [1693-74-9] (THF) and of oxetane [503-30-0] (OX) are classic examples of cationic ring-opening polymerizations. Under ideal conditions, the polymerization of the five-membered tetrahydrofuran ring is a reversible equiUbtium polymerization, whereas the polymerization of the strained four-membered oxetane ring is irreversible (1,2). [Pg.359]

The four-membered oxetane ring (trimethylene oxide [503-30-0]) has much higher ring strain, and irreversible ring-opening polymerization can occur rapidly to form polyoxetane [25722-06-9] ... [Pg.359]

Clavulanic acid has only weak antibacterial activity, but is a potent irreversible inhibitor for many clinically important P-lactamases (10—14,57,58) including penases, and Richmond-Sykes types 11, 111, IV, V, VI ([Bacteroides). Type I Cephases are poorly inhibited. Clavulanic acid synergizes the activity of many penicillins and cephalosporins against resistant strains. The chemistry (59—63), microbiology (64,65), stmcture activity relationships (10,13,60—62,66), biosynthesis (67—69), and mechanism of action (6,26,27,67) have been reviewed. [Pg.47]

Rubbers are exceptional in behaving reversibly, or almost reversibly, to high strains as we said, almost all materials, when strained by more than about 0.001 (0.1%), do something irreversible and most engineering materials deform plastically to change their shape permanently. If we load a piece of ductile metal (like copper), for example in tension, we get the following relationship between the load and the extension (Fig. 8.4). This can be... [Pg.79]

Graphite will creep imder neutron irradiation and stress at temperatures where thermal creep is normally negligible. The phenomenon of irradiation creep has been widely studied because of its significance to the operation of graphite moderated fission reactors. Indeed, if irradiation induced stresses in graphite moderators could not relax via radiation creep, rapid core disintegration would result. The observed creep strain has traditionally been separated into a primary reversible component ( ,) and a secondary irreversible component (Ej), both proportional to stress and to the appropriate unirradiated elastic compliance (inverse modulus) [69]. The total irradiation-induced creep strain (ej is thus ... [Pg.468]

When a plastic material is subjected to an external force, a part of the work done is elastically stored and the rest is irreversibly (or viscously) dissipated hence a viscoelastic material exists. The relative magnitudes of such elastic and viscous responses depend, among other things, on how fast the body is being deformed. It can be seen via tensile stress-strain curves that the faster the material is deformed, the greater will be the stress developed since less of the work done can be dissipated in the shorter time. [Pg.42]

Microindentation hardness normally is measured by static penetration of the specimen with a standard indenter at a known force. After loading with a sharp indenter a residual surface impression is left on the flat test specimen. An adequate measure of the material hardness may be computed by dividing the peak contact load, P, by the projected area of impression1. The hardness, so defined, may be considered as an indicator of the irreversible deformation processes which characterize the material. The strain boundaries for plastic deformation, below the indenter are sensibly dependent, as we shall show below, on microstructural factors (crystal size and perfection, degree of crystallinity, etc). Indentation during a hardness test deforms only a small volumen element of the specimen (V 1011 nm3) (non destructive test). The rest acts as a constraint. Thus the contact stress between the indenter and the specimen is much greater than the compressive yield stress of the specimen (a factor of 3 higher). [Pg.120]

A real material whose behaviour can be modelled in this way initially undergoes irreversible deformation as the stress is applied. This eventually ceases, and the material then behaves effectively as an elastic solid. Release of the stress will cause a rapid return to a less strained state, corresponding to the spring component of the response, but part of the deformation, arising due to viscous flow in the dashpot will not disappear. [Pg.103]

The mechanical concepts of stress are outlined in Fig. 1, with the axes reversed from that employed by mechanical engineers. The three salient features of a stress-strain response curve are shown in Fig. la. Initial increases in stress cause small strains but beyond a threshold, the yield stress, increasing stress causes ever increasing strains until the ultimate stress, at which point fracture occurs. The concept of the yield stress is more clearly realised when material is subjected to a stress and then relaxed to zero stress (Fig. Ih). In this case a strain is developed but is reversed perfectly - elastically - to zero strain at zero stress. In contrast, when the applied stress exceeds the yield stress (Fig. Ic) and the stress relaxes to zero, the strain does not return to zero. The material has irreversibly -plastically - extended. The extent of this plastic strain defines the residual strain. [Pg.11]

The two features of elasticity and plasticity are the key features of stress-strain responses. The responses are dynamic and they may be totally or incompletely reversible, totally irreversible and also sensitive to various... [Pg.11]

The strained hydrocarbon [1,1,1] propellane is of special interest because of the thermodynamic and kinetic ease of addition of free radicals (R ) to it. The resulting R-substituted [ 1.1.1]pent-1-yl radicals (Eq. 3, Scheme 26) have attracted attention because of their highly pyramidal structure and consequent potentially increased reactivity. R-substituted [1.1.1]pent-1-yl radicals have a propensity to bond to three-coordinate phosphorus that is greater than that of a primary alkyl radical and similar to that of phenyl radicals. They can add irreversibly to phosphines or alkylphosphinites to afford new alkylphosphonites or alkylphosphonates via radical chain processes (Scheme 26) [63]. The high propensity of a R-substituted [1.1.1] pent-1-yl radical to react with three-coordinate phosphorus molecules reflects its highly pyramidal structure, which is accompanied by the increased s-character of its SOMO orbital and the strength of the P-C bond in the intermediate phosphoranyl radical. [Pg.59]

ROMP is without doubt the most important incarnation of olefin metathesis in polymer chemistry [98]. Preconditions enabling this process involve a strained cyclic olefinic monomer and a suitable initiator. The driving force in ROMP is the release of ring strain, rendering the last step in the catalytic cycle irreversible (Scheme 3.6). The synthesis of well-defined polymers of complex architectures such as multi-functionaUsed block-copolymers is enabled by living polymerisation, one of the main benefits of ROMP [92, 98]. [Pg.82]

This deterioration is attributed mainly to irreversible oxidation 12,14,17), but other factors may be significant, for example strain in the crystal on oxygenation may eventually lead to an inactive modifieation 17). Co (II) salen is paramagnetic (low spin cT electron... [Pg.6]

Plastic deformation is a transport process in which elements of displacement are moved by a shear stress from one position to another. Unlike the case of elastic deformation, these displacements are irreversible. Therefore, they do not have potential energy (elastic strain energy) associated with them. Thus, although the deformation associated with them is often called plastic strain, it is a fundamentally different entity than an elastic strain. In this book, therefore, it will be called plastic deformation, and the word strain will be reserved for elastic deformation. [Pg.51]

Test Species/Strain/Sex/Number Squirrel monkeys, 2-4 males/group Exposure Route/Concentrations/Durations Inhalation exposure at 300,340, or 376 ppm for 15 min 130, 150, or 170 ppm for 30 min 75, 85, or 90 ppm for 60 min Effects Data specifically identifying serious, irreversible effects consistent with the AEGL-2 definition were not available. The lethality data are shown in the summary table for AEGL-3. [Pg.171]

Carbene Is proved to be photolabile, and long-wavelength irradiation (A. > 515 nm) results in the irreversible formation of the strained cyclopropene 3s. The methyl shift to give p-xylene, which is energetically much more favorable, is not... [Pg.194]

Carbene lv is photolabile, and 400 nm irradiation produces a mixture of products.108 By comparison with calculated IR spectra the major product was identified as cyclopropene 3v. The formation of 3v is irreversible, and it cannot be thermally (by annealing the matrix) nor photochemically converted back to carbene lv. The lv -> 3v rearrangement is calculated (B3LYP/6-31G(d) + ZPE) to be endothermic by only 5.4 kcal/mol with an activation barrier of 18.2 kcal/mol. Due to the two Si-C bonds in the five-membered ring of 3v this cyclopropene is less strained than 3s, which is reflected by the smaller destabilization relative to carbene lv. The thermal energy available at temperatures below 40 K is much too low to overcome the calculated barrier of 12.8 kcal/mol for the rearrangement of 3v back to lv, and consequently 3v is stable under the conditions of matrix isolation. [Pg.197]

The change of cyclopropyl cation to allyl cation is an irreversible reaction because only the ring opening is observed. It is irreversible cyclopropyl cation, is thermodynamically unstable with respect to allyl cation and also because the ring is under strain. [Pg.58]


See other pages where Strain irreversible is mentioned: [Pg.106]    [Pg.106]    [Pg.172]    [Pg.381]    [Pg.448]    [Pg.196]    [Pg.351]    [Pg.21]    [Pg.199]    [Pg.13]    [Pg.911]    [Pg.335]    [Pg.120]    [Pg.44]    [Pg.403]    [Pg.3]    [Pg.137]    [Pg.181]    [Pg.187]    [Pg.101]    [Pg.87]    [Pg.179]    [Pg.222]    [Pg.350]    [Pg.473]    [Pg.311]    [Pg.530]    [Pg.368]    [Pg.371]    [Pg.454]    [Pg.419]    [Pg.222]    [Pg.64]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



© 2024 chempedia.info