Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stable nitroxyls

The 9,9-dimethylacridan formed ia the reactioa betweea diphenylamine and acetone, besides functioning as an antioxidant, also improves the flex fife of mbber vulcani2ates siace it forms a more stable nitroxyl radical than the alkylated diphenylamiaes. [Pg.244]

The early recognition of the role of stable nitroxyl free radicals, e.g., 2,2,6,6-tetramethyl-4-oxopiperidine, and their hindered amine precursors, in polymer stabilization soon led to the development of the hindered amine light stabilizer (HALS) class of photoantioxidants. The first HALS, Tinuvin 770, AO-33, (commercialized in 1974) proved to offer much higher UV-stabil-ity to polymers than any conventional UV-stabilizer available at the time such as UV-absorbers, nickel compounds and benzoates. Table 3). [Pg.115]

Grustacean chitins were submitted to regiospeciUc oxidation at G-6 with NaOGl in the presence of the stable nitroxyl radical 2,2,6,6-tetramethyl-l-... [Pg.164]

The addition of an acceptor decreases the rate of POOH decomposition. The increase of added [InH] creates a tendency for k-% to decrease to the kA value, i.e., Ax —> A d at [InH] —> DC. Acceptors, which do not react with hydroperoxide groups, were used sterically hindered phenols and stable nitroxyl radicals (TEMPO) were found to be efficient acceptors. The ratio kinA(2kt)m can be calculated from the values Ax and A d according to the formula ... [Pg.475]

Antioxidants that break chains by reactions with alkyl radicals. These are compounds, such as quinones, nitrones, iminoquinones, methylenequinones, stable nitroxyl radicals, and nitrocompounds that readily accept alkyl radicals. Such antioxidants are efficient at very low concentrations of dioxygen and in solid polymers. [Pg.490]

A new interesting branch of the modern antioxidant chemistry deals with the cyclic mechanisms involving acid catalysis. The first inhibiting system of this type was discovered in 1988 [44]. It consisted of an alcohol (primary or secondary), a stable nitroxyl radical TEMPO, and... [Pg.583]

The resulting products, such as sulfenic acid or sulfur dioxide, are reactive and induce an acid-catalyzed breakdown of hydroperoxides. The important role of intermediate molecular sulfur has been reported [68-72]. Zinc (or other metal) forms a precipitate composed of ZnO and ZnS04. The decomposition of ROOH by dialkyl thiophosphates is an autocata-lytic process. The interaction of ROOH with zinc dialkyl thiophosphate gives rise to free radicals, due to which this reaction accelerates oxidation of hydrocarbons, excites CL during oxidation of ethylbenzene, and intensifies the consumption of acceptors, e.g., stable nitroxyl radicals [68], The induction period is often absent because of the rapid formation of intermediates, and the kinetics of decomposition is described by a simple bimolecular kinetic equation... [Pg.609]

A mixture of two antioxidants, one acceptor of the peroxyl radical (phenol or amine) and another alkyl radical acceptor (stable nitroxyl radical), causes the synergistic effect in autoxi-dation of hydrocarbons (ethylbenzene and nonene-1) [44-46]. [Pg.631]

Rotational diffusion of particles occurs in polymer much slowly than in liquids. Therefore, the observed difference in liquid (k ) and solid polymer (ks) rate constants can be explained by the different rates of reactant orientation in the liquid and polymer. The EPR spectra were obtained for the stable nitroxyl radical (2,2,6,6-tetramethyl-4-benzoyloxypiperidine-l-oxyl). The molecular mobility was calculated from the shape of the EPR spectrum of this radical [14,15], These values were used for the estimation of the orientation rate of reactants in the liquid and polymer cage. The frequency of orientation of the reactant pairs was calculated as vor = Pvrot> where P is the steric factor of the reaction, and vIol is the frequency of particle rotation to the angle equal to 4tt. The results of this comparison are given in Table 19.2. [Pg.650]

Reactions described earlier were not limited by rotational diffusion of reactants. It is evident that such bimolecular reactions can occur that are limited not by translational diffusion but by the rate of reactant orientation before forming the TS. We discussed the reactions of sterically hindered phenoxyl recombination in viscous liquids (see Chapter 15). We studied the reaction of the type radical + molecule, which are not limited by translational diffusion in a solution but are limited by the rate of reactant orientation in the polymer matrix [28]. This is the reaction of stable nitroxyl radical addition to the double bond of methylenequinone. [Pg.663]

For the last 50 years many scientists have drawn special attention to nitrones due to their successful application as building blocks in the synthesis of various natural and biologically active compounds, of stable nitroxyl radicals, and of other important products for special purposes such as spin traps for the study of radical processes including those that take place in biological systems, and they also found use as both, modifiers and regulators of molecular weight in radical polymerization. [Pg.129]

Oxidative Animation of Nitrones to a-Amino-Substituted Nitroxyl Radicals Similar to the oxidative methoxylation reaction, oxidative animation of 4H -imidazole TV-oxides, in amine saturated alcohol solutions, give stable nitroxyl (282), nitronyl nitroxyl (283), imino nitroxyl (284) and (285) radicals with the amino group at the a-carbon atom of the nitroxyl group (Scheme 2.107) (520, 521). The observed influence of substituents on the ratio of animation products at C2 and C5 atom is close to the ratio observed in the previously mentioned oxidative methoxylation reaction. It allows us to draw conclusions about the preference of the radical cation reaction route. [Pg.219]

The general trend of nitrones toward radical reactions can be explained by a variety of reasons (a) their readiness to be transformed into stable nitroxyl radicals as a result of the so-called spin trapping (b) one-electron oxidation into radical cations and (c) one-electron reduction into radical anions (Scheme 2.77, routes C,D and E). Depending on the reaction conditions either route has been... [Pg.220]

The reaction of organometalic compounds with nitrones can be applied not only to the synthesis of stable nitroxyl radicals but also to the preparation of optically active secondary amines (Scheme 2.162) (617, 618). [Pg.262]

Addition ofN-, S- and P-Nucleophiles The reaction of nitrones with heteroatom centered nucleophiles has been little investigated and are mainly applied to the synthesis of new heterocyclic systems and stable nitroxyl radicals, containing a heteroatom at the a-carbon atom. [Pg.290]

A study of the polymerization kinetics of methyl methacrylate, in the presence of PBN, and of molecular-mass properties of the obtained polymers shows that the systems react by the pseudoliving mechanism (699). In the first stages of the polymerization process, PBN reacts with oligomeric radicals, forming stable nitroxyl radical-spin adducts A-, see Scheme 2.207. [Pg.295]

The stable nitroxyl radicals can be used for quenching the singlet excited naphthalene through an electron exchange mechanism156. [Pg.810]

The last decades have witnessed the emergence of new living Vcontrolled polymerizations based on radical chemistry [81, 82]. Two main approaches have been investigated the first involves mediation of the free radical process by stable nitroxyl radicals, such as TEMPO while the second relies upon a Kharash-type reaction mediated by metal complexes such as copper(I) bromide ligated with 2,2 -bipyridine. In the latter case, the polymerization is initiated by alkyl halides or arenesulfonyl halides. Nitroxide-based initiators are efficient for styrene and styrene derivatives, while the metal-mediated polymerization system, the so called ATRP (Atom Transfer Radical Polymerization) seems the most robust since it can be successfully applied to the living Vcontrolled polymerization of styrenes, acrylates, methacrylates, acrylonitrile, and isobutene. Significantly, both TEMPO and metal-mediated polymerization systems allow molec-... [Pg.32]

Nitroso compounds, nitrones, and other diamagnetic molecules are used as spin traps. Capturing radicals prodnced in the reaction, spin traps form the so-called spin adducts—stable nitroxyl radicals easily detectable by ESR spectroscopy. In other words, the progress of the reaction can easily be followed by an increasing intensity of the spin-adduct signal. By and large, the method of traps reveals radicals by the disappearance (or appearance) of the ESR signal. [Pg.227]

In addition, such chelators, based on the hydroxamic acid bidentate ligand, may diminish the toxic effect of Reactive Oxygen Species (ROS), such as hydroxyl and superoxide radicals, by generating relatively stable nitroxyl radicals. ... [Pg.792]

Under Mild Conditions Using Stable Nitroxyl Free Radicals... [Pg.119]

In recent years, much effort has been spent on developing both selective and environmentally friendly oxidation methods using either air or oxygen as the ultimate, oxidant. One of the most selective and efficient catalyst systems reported to date is based on the use of stable nitroxyl radicals as catalysts and transition metal salts as co-catalysts (15). The most commonly used co-catalysts are (NH4)2Ce(N03)6 (16), CuBr2-2,2 -bipiridine complex (17), RuCl2(PPh3)3 (18,19), Mn(N03)2-Co(N03)2 and Mn(N03)2-Cu(N03)2 (20). However, from an economic and environmental point of view, these oxidation methods suffer from one common drawback. They depend on substantial amounts of expensive and/or toxic transition metal complexes and some of them require the use of halogenated solvents like dichloromethane, which makes them unsuitable for industrial scale production. [Pg.120]

The first observations of the additions of transient radicals to nitroso compounds (equation 60) and nitrones (equation 61) to form stable nitroxyl radicals, which could be conveniently detected by ESR for the identification of the transient radicals, were reported in the mid-1960s. This technique has been extensively applied in chemical "" and biological systems. " ... [Pg.27]

The name spin trapping was coined by Janzen, and derives from analogy with the use of stable nitroxyls as spin labels (or spin probes ) that provide spectroscopic information regarding their microscopic environment, a procedure pioneered by McConnell et alP ... [Pg.27]

Cheletrophic spin trapping of nitric oxide. Ultraviolet light converts the phenolic compound to a biradical, which rapidly reacts with nitric oxide to form a stable nitroxyl radical that is readily observable by electron paramagnetic resonance. [Pg.39]

Obviously there is a definite need in the fine chemical and pharmaceutical industry for catalytic systems that are green and scalable and have broad utihty [10]. More recently, oxidations with the inexpensive household bleach (NaOCl) catalyzed by stable nitroxyl radicals, such as TEMPO [17] and PIPO [18], have emerged as more environmentally friendly methods. It is worth noting at this juncture that greenness is a relative description and there are many shades of green. Although the use of NaOCl as the terminal oxidant affords NaCl as the by-product and may lead to the formation of chlorinated impurities, it constitutes a dramatic improvement compared to the use of chromium(VI) and other... [Pg.9]


See other pages where Stable nitroxyls is mentioned: [Pg.519]    [Pg.115]    [Pg.94]    [Pg.467]    [Pg.52]    [Pg.456]    [Pg.657]    [Pg.216]    [Pg.220]    [Pg.261]    [Pg.399]    [Pg.267]    [Pg.102]    [Pg.623]    [Pg.457]    [Pg.658]    [Pg.397]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Electron Spin Polarization Transfer from Radicals of Photoinitiators to Stable Nitroxyl Polyradicals

Nitroxyl

Nitroxylation

Nitroxyls

Stable nitroxyl radical

© 2024 chempedia.info