Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilizer metal salts

Use Plasticizers, vinyl stabilizers, metallic salts, al-kyd resins. [Pg.839]

Hazardous Decomp. Prods. Heated to decomp., emits acrid smoke and irritating fumes NFPA Health 2, Flammability 1, Reactivity 0 Storage Store in cool, well-ventilated area Uses Plasticizers vinyl stabilizers metallic salts alkyd resins synthetic flavoring agent in foods and pharmaceuticals fragrance in cosmetics... [Pg.2670]

BackTitrations. In the performance of aback titration, a known, but excess quantity of EDTA or other chelon is added, the pH is now properly adjusted, and the excess of the chelon is titrated with a suitable standard metal salt solution. Back titration procedures are especially useful when the metal ion to be determined cannot be kept in solution under the titration conditions or where the reaction of the metal ion with the chelon occurs too slowly to permit a direct titration, as in the titration of chromium(III) with EDTA. Back titration procedures sometimes permit a metal ion to be determined by the use of a metal indicator that is blocked by that ion in a direct titration. Eor example, nickel, cobalt, or aluminum form such stable complexes with Eriochrome Black T that the direct titration would fail. However, if an excess of EDTA is added before the indicator, no blocking occurs in the back titration with a magnesium or zinc salt solution. These metal ion titrants are chosen because they form EDTA complexes of relatively low stability, thereby avoiding the possible titration of EDTA bound by the sample metal ion. [Pg.1167]

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

Commercial Stabilizers. There is a great variety of commercial formulations utilizing the mixture of the alkaU and alkaline-earth metal salts and soaps. In many cases, products are custom formulated to meet the needs of a particular appHcation or customer. The acidic ligands used ia these products vary widely and have dramatic effects on the physical properties of the PVC formulations. The choice of ligands can affect the heat stabiHty, rheology, lubricity, plate-out tendency, clarity, heat sealabiHty, and electrical and mechanical properties of the final products. No single representative formulation can cover the variety of PVC appHcations where these stabilizers are used. [Pg.550]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

Polymers. In combination with various metal salts, sorbitol is used as a stabilizer against heat and light in poly(vinyl chloride) (qv) resins and, with a phenohc antioxidant, as a stabilizer in uncured styrene—butadiene mbber (qv) compositions and in polyolefins (see Heat stabilizers Olefin POLYMERS Rubbercompounding). Heat-sealable films are prepared from a dispersion of sorbitol and starch in water (255). Incorporation of sorbitol in coUagen films gready restricts their permeabiUty to carbon dioxide (256). [Pg.55]

Complexing agents, which act as buffers to help control the pH and maintain control over the free metal—salt ions available to the solution and hence the ion concentration, include citric acid, sodium citrate, and sodium acetate potassium tartrate ammonium chloride. Stabilizers, which act as catalytic inhibitors that retard the spontaneous decomposition of the bath, include fluoride compounds thiourea, sodium cyanide, and urea. Stabilizers are typically not present in amounts exceeding 10 ppm. The pH of the bath is adjusted. [Pg.528]

Whereas other metal salts, especially lead stearates and srdfates, or mixtures of Groups 2 and 12 carboxylates (Ba—Cd, Ba—Zn, Ca—Zn) ate also used to stabilize PVC, the tin mercaptides are some of the most efficient materials. This increased efficiency is largely owing to the mercaptans. The principal mechanism of stabilization of PVC, in which all types of stabilizers participate, is the adsorption of HCl, which is released by the PVC during degradation. This is important because the acid is a catalyst for the degradation, thus, without neutralization the process is autocatalytic. [Pg.6]

Chonical Reactivity - Reactivity with Water No reaction Reactivity with Common Materials No reactions Stability During Transport Stable Neutralizing AgerUsfor Acids and Caustics Not pertinent Polymerization Polymerization can occur if the product s temperature is raised above 150 of. This can cause the rupture of containers. Avoid contact with metal salts, peroxides, and strong acids, which can cause polymerization to occur Inhibitor of Polymerization Tertiarybutylcatechol (10 15 ppm). [Pg.363]

The first report on metal-catalyzed asymmetric azomethine ylide cycloaddition reactions appeared some years before this topic was described for other 1,3-dipolar cycloaddition reactions [86]. However, since then the activity in this area has been very limited in spite of the fact that azomethine ylides are often stabilized by metal salts as shown in Scheme 6.40. [Pg.240]

Organic metal salts have frequently failed to produce an appreciable chemical stabilization effect, either during dehydrochlorination induction periods or in later decomposition stages. While this does not rule out the occurrence of Frye and Horst substitution reactions, it does suggest that these reactions may not be responsible for the observed retardation of color developments [126-128]. [Pg.327]

Similar considerations apply to oxidation. An anion which is considerably more stable than water will be unaffected in the neighbourhood of the anode. With a soluble anode, in principle, an anion only needs be more stable than the dissolution potential of the anode metal, but with an insoluble anode it must be stable at the potential for water oxidation (equation 12.4 or 12.5) plus any margin of polarisation. The metal salts, other than those of the metal being deposited, used for electroplating are chosen to combine solubility, cheapness and stability to anode oxidation and cathode reduction. The anions most widely used are SOj", Cl", F and complex fluorides BF4, SiFj , Br , CN and complex cyanides. The nitrate ion is usually avoided because it is too easily reduced at the cathode. Sulphite,... [Pg.343]

Ballistic Strength. 100% T NT (BuM ine s) Explosion Temperature. Does not expld or ignite at 360° or below Heat of Combustion. 8l8.1kcal/mole Hygroscopicity. Practically none Impact Sensitivity. Comparable to TNT Power. By Trauzl test, 103% TNT Rifle Bullet Test. No detonations from impact of. 30 cal bullet at 90 ft Thermal Stability. Unsatisfactory, loses 49% of wt in 48 hrs at 75° (International Test) Velocity of Detonation. No information Salts of (m-Nitrophenyll-dinitromethane. Milone and Massa (Ref 2) prepd several metallic salts and found that their expl power decreased with increasing atomic v/t of the metal Following are some of the expl salts K salt—yel crysts ... [Pg.721]

Most suspended solids in water have a surface electrical charge that provides stability to the particles. This ionic charge is usually a negative (—) charge and requires the addition of metal salts or cationic (+) polymer coagulants to destabilize the particles and permit them to agglomerate or come together. [Pg.313]

Later, Farnham and Johnson reported the synthesis of higher molecular weight, tiiermoplastic polyfarylcnc etiier)s with good thermal, oxidative, chemical stability, and physical properties by reacting (at 120-260°C) a phenolate metal salt... [Pg.361]

To improve the dimensional stability of the oligoethyleneoxy phosphazene/ metal salt complexes, some attempts have been reported which concern the chemical modification of the parent polymers, their chemical or radiation cross-linking, or the use of blends. [Pg.206]

In conclusion, polymer electrolytes based on phosphazene backbone and containing ether side chains are, after complexation with alkali metal salts, among the highest ionically solvent-free polymer salt complexes, with conductivities in the order of 10" -10" S cm However, these conductivities are still below the value of 10 S cm" which is considered to be the minimum for practical applications. Therefore the design of new polyphosphazenes electrolytes with a higher conductivity and also a higher dimensional stability still remains a challenge for future researchers. [Pg.212]

In this review, CPOs constructed by covalent bonds are mainly focused on however, stable coordination bonds comparable to the stability of the covalent bonds have potential for future enhanced molecular design of novel CPOs. One representative is the bond between pyridine-type nitrogen and metal, which is widely used in supramolecular chemistry, that is, the cyclic supramolecular formation reaction between pyridine-substituted porphyrin and metal salts (Fig. 6d) [27,28]. Palladium salts are frequently used as the metal salts. From the viewpoint of the hard and soft acid and base theory (HSAB), this N-Pd coordination bond is a well-balanced combination, because the bonds between nitrogen and other group X metals, N-Ni and Ni-Pt coordination bonds, are too weak and too strong to obtain the desired CPOs, respectively. For the former, the supramolecular architectures tend to dissociate into pieces in the solution state, and for the latter. [Pg.76]


See other pages where Stabilizer metal salts is mentioned: [Pg.493]    [Pg.493]    [Pg.129]    [Pg.2902]    [Pg.20]    [Pg.546]    [Pg.549]    [Pg.550]    [Pg.550]    [Pg.472]    [Pg.274]    [Pg.281]    [Pg.257]    [Pg.186]    [Pg.240]    [Pg.439]    [Pg.252]    [Pg.53]    [Pg.417]    [Pg.102]    [Pg.326]    [Pg.326]    [Pg.327]    [Pg.57]    [Pg.541]    [Pg.400]    [Pg.229]    [Pg.76]    [Pg.743]    [Pg.93]    [Pg.263]    [Pg.276]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Carbohydrate-metal salt complexes stability

Metallic stabilizers

Metals stabilization

Radical stability transition metal salts

Stabilization, salt

© 2024 chempedia.info