Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability poison

To conclude this section, it is necessary to state that Pd and Pd-based membranes are currently the membranes with the highest hydrogen permeability and selectivity. However, the cost, availability, their mechanical and thermal stabilities, poisoning, and carbon deposition problems have made the large-scale industrial application of these dense metal membranes difficult, even when prepared in a composite configuration [26,29,33-37],... [Pg.471]

STABILITY POISONS When water vapor is present in the sulfur dioxide-air mixture supplied to a platinum-alumina catalyst, a decrease in oxidation activity occurs. This type of poisoning is due to the effect of water on the structure of the alumina carrier. Temperature has a pronounced ejffect on... [Pg.324]

Use long-term (>1000 h) tests to determine effects on catalyst stability, poisoning and long-term degradation... [Pg.106]

Some metallic compounds present in trace level (ppm) in petroleum feed, adsorbed to the active site of the catalyst, act and change the selectivity of the reaction by producing more and more unwanted products. When water vapour is present in the sulphur dioxide-air mixture supplied to a platinum-alumina catalyst, a decrease in oxidation activity occurs. This type of poisoning is due to the effect of wafer on fhe sfrucfure of the alumina carrier and is known as stability poisoning. The resulting increase in diffusional resistance may dramatically increase the Thiele modulus, and reduce the effectiveness factor for the reaction. In extreme cases, the pressure drop through a catalyst bed may also increase dramatically. [Pg.87]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

HTS catalyst consists mainly of magnetite crystals stabilized using chromium oxide. Phosphoms, arsenic, and sulfur are poisons to the catalyst. Low reformer steam to carbon ratios give rise to conditions favoring the formation of iron carbides which catalyze the synthesis of hydrocarbons by the Fisher-Tropsch reaction. Modified iron and iron-free HTS catalysts have been developed to avoid these problems (49,50) and allow operation at steam to carbon ratios as low as 2.7. Kinetic and equiUbrium data for the water gas shift reaction are available in reference 51. [Pg.348]

The influence of Zn-deposition on Cu(lll) surfaces on methanol synthesis by hydrogenation of CO2 shows that Zn creates sites stabilizing the formate intermediate and thus promotes the hydrogenation process [2.44]. Further publications deal with methane oxidation by various layered rock-salt-type oxides [2.45], poisoning of vana-dia in VOx/Ti02 by K2O, leading to lower reduction capability of the vanadia, because of the formation of [2.46], and interaction of SO2 with Cu, CU2O, and CuO to show the temperature-dependence of SO2 absorption or sulfide formation [2.47]. [Pg.24]

Chemical Reactivity - Reactivity with Water Reacts vigorously with water, generating phosphine, which is a poisonous and spontaneously flammable gas Reactivity with Common Materials Can react with surface moisture to generate phosphine, which is toxic and spontaneously flammable Stability During Transport Stable if kept dry Neutralizing Agents for Acids and Caustics Not pertinent Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.78]

PH3 is an extremely poisonous, highly reactive, colourless gas which has a faint garlic odour at concentrations above about 2 ppm by volume. It is intermediate in thermal stability between NH3 (p. 421) and ASH3 (p. 557). Several convenient routes are available for its preparation ... [Pg.492]

The low yields of 6,6 -disubstituted-2,2 -bipyridincs recorded in Table I are probably the result of steric retardation of the adsorption of 2-substituted pyridines. This view is supported by the observation that 2-methylpyridine is a much weaker poison for catalytic hydrogenations than pyridine. On the other hand, the quinolines so far examined (Table II) are more reactive but with these compounds the steric effect of the fused benzene ring could be partly compensated by the additional stabilization of the adsorbed species, since the loss of resonance energy accompanying the localization of one 71-electron would be smaller in a quinoline than in a pyridine derivative. [Pg.196]

Maleic anhydride is a convenient dienophile because of its rapid reaction with most dienes as well as its stability and ease in handling (although it is poisonous). The diene for this reaction, 1,4-diphenyl-1,3-butadiene, is readily prepared by the Wittig reaction with benzyltriphenylphosphonium chloride and cinnamaldehyde (Chapter 11, Section I). [Pg.71]

In addition to having the required spedfidty, lipases employed as catalysts for modification of triglycerides must be stable and active under the reaction conditions used. Lipases are usually attached to supports (ie they are immobilised). Catalyst activity and stability depend, therefore, not only on the lipase, but also the support used for its immobilisation. Interesterification reactions are generally run at temperatures up to 70°C with low water availability. Fortunately many immobilised lipases are active and resistant to heat inactivation under conditions of low water availability, but they can be susceptible to inactivation by minor components in oils and fats. If possible, lipases resistant to this type of poisoning should be selected for commercial operations. [Pg.331]

Mercury (Quicksilver, Hydrargyrum), Hg, at wt 200.61, silvery liq, mp —38.87°, bp 356.9°, d 13.546g/cc at 20°. Insol in w, HC1, ale and eth sol In nitric acid. Sometimes found native poisonous. Can be prepd by heating the ore cinnabar (HgS) either in air or with lime. Forms numerous salts, some of which are very expl, eg, Hg fulminate, Hg azide, etc. The presence of Hg in expls, even in minute quants, is unde-sireable because it affects the result of thermal stability tests. Marshall (Ref 1) describes various tests used in Engl and Ger for its detection in different expls and propints Refs 1) Marshall 2, 708-12(1917) 2) Mellor... [Pg.77]

Thus, in the systems under consideration, MeX may form haionium ions with growing carbenium ions. Since the stability of haionium ions depends on the polarizability of ttie halogen38 —I > —Br > —Cl, Mel should form the most stable haionium ions, le., have most pronounced poisoning effect, followed by MeBr and MeCl. Indeed, Mel may even compete for the carbocation with highly nucleophilic counterions. [Pg.108]


See other pages where Stability poison is mentioned: [Pg.203]    [Pg.149]    [Pg.760]    [Pg.325]    [Pg.347]    [Pg.178]    [Pg.203]    [Pg.149]    [Pg.760]    [Pg.325]    [Pg.347]    [Pg.178]    [Pg.204]    [Pg.412]    [Pg.482]    [Pg.76]    [Pg.197]    [Pg.503]    [Pg.458]    [Pg.6]    [Pg.25]    [Pg.75]    [Pg.99]    [Pg.229]    [Pg.230]    [Pg.304]    [Pg.315]    [Pg.557]    [Pg.26]    [Pg.276]    [Pg.89]    [Pg.230]    [Pg.100]    [Pg.191]    [Pg.649]    [Pg.747]    [Pg.24]    [Pg.298]   
See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Poisons thermal stability

© 2024 chempedia.info