Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilisers phenolic

Mention has already been made of epoxide stabilisers. They are of two classes and are rarely used alone. The first class are the epoxidised oils, which are commonly employed in conjunction with the cadmium-barium systems. The second class are the conventional bis-phenol A epoxide resins (see Chapter 22). Although rarely employed alone, used in conjunction with a trace of zinc octoate (2 parts resin, 0.1 part octoate) compounds may be produced with very good heat stability. [Pg.329]

In addition to stabilisers, antioxidants and ultra-violent absorbers may also be added to PVC compounds. Amongst antioxidants, trisnonyl phenyl phosphite, mentioned previously, is interesting in that it appears to have additional functions such as a solubiliser or chelator for PVC insoluble metal chlorides formed by reaction of PVC degradation products with metal stabilisers. Since oxidation is both a degradation reaction in its own right and may also accelerate the rate of dehydrochlorination, the use of antioxidants can be beneficial. In addition to the phenyl phosphites, hindered phenols such as octadecyl 3-(3,5-di-tcrt-butyl-4-hydroxyphenyI)propionate and 2,4,6-tris (2,5-di-rcrt-butyl-4-hydroxybenzyl)-1,3,5-trimethylbenzene may be used. [Pg.330]

The use of stabilisers (antioxidants) may, however, have adverse effects in that they inhibit cross-linking of the rubber. The influence of phenolic antioxidants on polystyrene-SBR alloys blended in an internal mixer at 180°C has been studied. It was found that alloys containing 1% of certain phenolic antioxidants were gel-deficient in the rubber phase.The gel-deficient blends were blotchy in appearance, and had lower flow rates compared with the normal materials, and mouldings were somewhat brittle. Substantial improvements in the impact properties were achieved when the antioxidant was added later in the mixing cycle after the rubber had reached a moderate degree of cross-linking. [Pg.439]

Amongst heat stabilisers are copper salts, phosphoric acid esters,phenyl-3-naphthylamine, mercaptobenzothiazole and mercaptobenzimidazole. Of these, copper salts in conjunction with halides have been found particularly effective, and some automotive specifications require the use of copper for heat stabilisation. Light stabilisers include carbon black and various phenolic materials. [Pg.497]

It is not only lipids but also essential oils which are sensitive to oxidative changes on storage. Sometimes stabilised by synthetic or natural antioxidants, they usually contain substances showing moderate antioxidant activity, but these may be lost by evaporation or oxidised by air oxygen unless more powerful phenolic antioxidants are added. [Pg.310]

SHAHiDi F and NACZK M (1993) Food Phenolics, Lancaster, P A, Technomic Publishers. YANISHLIEVA N V and MARINOVA E M (2001) Stabilisation of edible oils with natural antioxidants , Eur J Lipid Sci Technol, 103 (11) 752-67. [Pg.312]

Long-term stabiliser (always for Z/N PP, usually phenolic AOs)... [Pg.7]

Standardisation of EPDM characterisation tests (molecular composition, stabiliser and oil content) for QC and specification purposes was reported [64,65]. Infrared spectroscopy (rather than HPLC or photometry) is recommended for the determination of the stabiliser content (hindered phenol type) of EP(D)M [65]. Determination of the oil content of oil-extended EPDM is best carried out by Soxhlet extraction using MEK as a solvent [66], A round robin test was reported that evaluated the various techniques currently used in the investigation of unknown rubber compounds (passenger tyre tread stock formulations) [67]. [Pg.35]

Kellum [115] has described a class-selective oxidation chemistry procedure for the quantitative determination of secondary antioxidants in extracts of PE and PP with great precision (better than 1 %). Diorgano sulfides and tertiary phosphites can be quantitatively oxidised with /-chloropcroxybenzoic acid to the corresponding sulfones and phosphates with no interference from other stabilisers or additives. Hindered phenols, benzophenones, triazoles, fatty acid amides, and stearate... [Pg.47]

Wieboldt et al. [560] have described SFE-SFC-FTIR analysis of hindered phenol primary antioxidants and phosphite secondary antioxidants in PE. SFE is more selective for the lower-range low-MW polymer than Soxhlet-type extraction. This yields a chromatogram with less interference from low-MW polymer peaks in the region where the additive components elute. As a result, SFE appears to be a better choice than Soxhlet-type extraction for the selective removal of additives from flaked polymer. SFE and dissolution/precipitation methods were compared for a PVC/stabiliser system [366]. [Pg.137]

It has been observed that complete immobilisation of the stabiliser through a graft leads to deactivation. However, proper selection of the ratio of phenolic to graftable groups leads to a polymer-bound product which retains sufficient mobility to provide a high level of antioxidant activity. An n/m ratio of 5-10 provides an optimal balance of graftability and antioxidant activity [144]. [Pg.142]

High-MW hindered amine thermal stabiliser (HATS) formulations are designed for advanced extraction resistant long-term stabilisation, i.e. for use in extractive environments such as polyolefin pipes, fulfilling the stringent requirement of guaranteeing product lifetime of more than 50 years [565], These systems offer much better gas and hot water resistance than the low-MW phenolic antioxidant systems. Ethanox 330... [Pg.145]

GC is extensively used to determine phenolic and amine antioxidants, UV light absorbers, stabilisers and organic peroxide residues, in particular in polyolefins, polystyrene and rubbers (cf. Table 61 of Crompton [158]). Ostromow [159] has described the quantitative determination of stabilisers and AOs in acetone or methanol extracts of rubbers and elastomers by means of GC. The method is restricted to analytes which volatilise between 160 °C and 300 °C without decomposition. A selection of 47 reports on GC analysis of AOs in elastomers (period 1959-1982) has been published... [Pg.197]

As to the main limitation of MS vs. FTIR detection, namely the inability to distinguish closely related isomers, this rarely plays a role in additive analysis. Notable examples of isomeric additives are the bifunctional stabilisers C22H30O2S as 4,4 -thio-bis-(6-t-butyl-m-cresol), 2,2 -thio-bis-(4-methyl-6-f-butylphenol) and 4,4 -thio-bis-(2-methyl-6-f-butylphenol) (Section 6.3.6), the bisphenolic antioxidants C23H32O2 (Plastanox 2246 and Ethanox 720) and the phenolic antioxidants C15H24O (nonylphenol and di-f-butyl-p-cresol). [Pg.459]

Crompton [21] has reviewed the use of electrochemical methods in the determination of phenolic and amine antioxidants, organic peroxides, organotin heat stabilisers, metallic stearates and some inorganic anions (such as bromide, iodide and thiocyanate) in the 1950s/1960s (Table 8.75). The electrochemical detector is generally operated in tandem with a universal, nonselective detector, so that a more general sample analysis can be obtained than is possible with the electrochemical detector alone. [Pg.667]

Meyer-Dulheuer [55] has analysed the pure additives (phenolic antioxidants, benzotriazole UV stabilisers and HALS compounds) of Table 9.8 in THF solutions by means of MALDI-ToFMS. As it turns out, polar molecules in the mass range of below 800 Da, which have a high absorption coefficient at the laser wavelength used, can often be measured without any matrix [55,56]. In this case, there is no matrix-assisted laser desorption and ionisation (MALDI) process any more. It is a simple laser desorption/ionisation (LDI) process. The advantage of this method is a matrix-free mass spectrum with the same mass resolution as in the MALDI case,... [Pg.703]

Hydroxylamines Reducing phenolic discoloration alternative to traditional phenolic AO based stabilisation... [Pg.718]

New developments are hydroxylamines and lactones (for processing stability), which operate at an earlier stage during stabilisation. Lactone (benzofuranone) chemistry has been identified as commercially viable, and marks a revolutionary advance in comparison to hindered phenols and phosphites [18]. New lactone chemistry (Figure 10.1) provides enhanced additive compatibility, reduced taste and odour (organoleptics), resistance to irradiation-induced oxidation, and inhibition of gas fade discoloration. The commercial introduction of fundamentally new types of stabilisers for commodity and engineering polymers is not expected in the near future. [Pg.719]

Great Lakes has reported that functionalisation with graftable moieties results in a product which can be chemically bound to a polysiloxane backbone, e.g. Silanox MD. Functionalisation of polysiloxanes with HALS (polymer-bound HALS, P-HALS) and phenolic antioxidants has been described [22]. Functionalised polysiloxanes (Figure 3.23) exhibit high stabilisation activity in critical applications such as PP fibres and PE cables [58]. [Pg.721]


See other pages where Stabilisers phenolic is mentioned: [Pg.631]    [Pg.639]    [Pg.387]    [Pg.56]    [Pg.301]    [Pg.310]    [Pg.321]    [Pg.258]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.15]    [Pg.47]    [Pg.48]    [Pg.140]    [Pg.143]    [Pg.144]    [Pg.144]    [Pg.195]    [Pg.197]    [Pg.216]    [Pg.220]    [Pg.228]    [Pg.228]    [Pg.229]    [Pg.309]    [Pg.332]    [Pg.699]    [Pg.703]    [Pg.719]    [Pg.722]   
See also in sourсe #XX -- [ Pg.699 ]




SEARCH



Stabilisation Stabilise

Stabilisation Stabilised

Stabilisation Stabiliser

Stabilisation stabilisates

Stabilise

Stabilisers

Stabilisers hindered phenols

© 2024 chempedia.info