Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sputtering spectroscopy

Barish E L, Vitkavage D J and Mayer T M 1985 Sputtering of chlorinated silicon surfaces studied by secondary ion mass spectrometry and ion scattering spectroscopy J. AppL Phys. 57 1336-42... [Pg.2941]

Use of glow-discharge and the related, but geometrically distinct, hoUow-cathode sources involves plasma-induced sputtering and excitation (93). Such sources are commonly employed as sources of resonance-line emission in atomic absorption spectroscopy. The analyte is vaporized in a flame at 2000—3400 K. Absorption of the plasma source light in the flame indicates the presence and amount of specific elements (86). [Pg.114]

Auger electron spectroscopy (AES) is a technique used to identify the elemental composition, and in many cases, the chemical bonding of the atoms in the surface region of solid samples. It can be combined with ion-beam sputtering to remove material from the surface and to continue to monitor the composition and chemistry of the remaining surface as this surface moves into the sample. It uses an electron beam as a probe of the sample surface and its output is the energy distribution of the secondary electrons released by the probe beam from the sample, although only the Ai er electron component of the secondaries is used in the analysis. [Pg.310]

Intensity enhancement takes place on rough silver surfaces. Under such conditions, Raman scattering can be measured from monolayers of molecular substances adsorbed on the silver (pyridine was the original test case), a technique known as surface-enhanced Raman spectroscopy. More recendy it has been found that sur-fiice enhancement also occurs when a thin layer of silver is sputtered onto a solid sample and the Raman scattering is observed through the silver. [Pg.434]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

Roughness from sputtering causes loss of depth resolution in depth profiling for Auger Electron Spectroscopy (AES), X-Ray Photoelectron Spectroscopy (XPS), and SIMS. [Pg.706]

Sputter-Initiated Resonance Ionization Spectroscopy Surface Analysis by Resonant Ionization Spectroscopy Time-of-Flight Mass Spectrometer... [Pg.768]

Fig. 12. Auger electron spectroscopy (AES) sputter-depth profile of CAA-treated titanium after various exposure.s in vacuum (a) as anodized, (b) 450°C for 1 h, and (c) 7(X)°C for 1 h. The sputter etch rate is 1.5 nm/min. The line indicates the original interface. The arrow denotes oxygen diffused into the substrate. Adapted from Ref. [51]. Fig. 12. Auger electron spectroscopy (AES) sputter-depth profile of CAA-treated titanium after various exposure.s in vacuum (a) as anodized, (b) 450°C for 1 h, and (c) 7(X)°C for 1 h. The sputter etch rate is 1.5 nm/min. The line indicates the original interface. The arrow denotes oxygen diffused into the substrate. Adapted from Ref. [51].
Work has also been conducted that involved the investigation, via infrared spectroscopy, of matrix-isolated, plutonium oxides (40), with the appropriate precautions being taken because of the toxicity of plutonium and its compounds. A sputtering technique was used to vaporize the metal. The IR spectra of PuO and PUO2 in both Ar and Kr matrices were identified, with the observed frequencies for the latter (794.25 and 786.80 cm", respectively) assigned to the stretchingmode of Pu 02. Normal-coordinate analysis of the PUO2 isotopomers, Pu 02, Pu 02, and Pu 0 0 in Ar showed that the molecule is linear. The PuO molecule was observed in multiple sites in Ar matrices, but not in Kr, with Pu 0 at 822.28 cm" in the most stable, Ar site, and at 817.27 cm" in Kr. No evidence for PuOa was observed. [Pg.140]

Another study (200) presented IR data for a number of hydride and deuteride species. Using matrix-isolation spectroscopy in conjunction with a hollow-cathode, sputtering source (the apparatus for which is shown in Fig. 36), the IR-active vibrations of the diatomic hydrides and deuterides of aluminum, copper, and nickel were observed. The vibra-... [Pg.144]

Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy. Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy.
GDS instruments are viable alternatives to the traditional arc and spark-source spectroscopies for bulk metals analysis. Advantages of GDS over surface analysis methods such as AES, XPS and SIMS are that an ultrahigh vacuum is not needed and the sputtering rate is relatively high. In surface analysis, GD-OES, AES, XPS and SIMS will remain complementary techniques. GD-OES analysis is faster than AES (typically 10 s vs. 15 min). GD-OES is also 100 times more sensitive than... [Pg.618]

We will first consider, however, Secondary Ion Mass Spectroscopy (SIMS) in which both neutral and charged species are sputtered from the surface, and detected by means of a mass spectrometer. This involves ion beams of lower energy than in the techniques described previously. [Pg.71]

Since ion beams (like electron beams) can be readily focussed and deflected on a sample so that chemical composition imaging is possible. The sputtered particles largely originate from the top one or two atom layers of a surface, so that SIMS is a surface specific technique and it provides information on a depth scale comparable with other surface spectroscopies. [Pg.72]

In order to understand the observed shift in oxidation potentials and the stabilization mechanism two possible explanations were forwarded by Kotz and Stucki [83], Either a direct electronic interaction of the two oxide components via formation of a common 4-band, involving possible charge transfer, gives rise to an electrode with new homogeneous properties or an indirect interaction between Ru and Ir sites and the electrolyte phase via surface dipoles creates improved surface properties. These two models will certainly be difficult to distinguish. As is demonstrated in Fig. 25, XPS valence band spectroscopy could give some evidence for the formation of a common 4-band in the mixed oxides prepared by reactive sputtering [83],... [Pg.107]


See other pages where Sputtering spectroscopy is mentioned: [Pg.1828]    [Pg.1859]    [Pg.265]    [Pg.269]    [Pg.277]    [Pg.356]    [Pg.356]    [Pg.3]    [Pg.24]    [Pg.39]    [Pg.296]    [Pg.363]    [Pg.386]    [Pg.528]    [Pg.700]    [Pg.235]    [Pg.265]    [Pg.367]    [Pg.374]    [Pg.74]    [Pg.80]    [Pg.166]    [Pg.211]    [Pg.257]    [Pg.258]    [Pg.92]    [Pg.105]    [Pg.106]    [Pg.272]    [Pg.274]    [Pg.149]    [Pg.244]    [Pg.251]    [Pg.77]   
See also in sourсe #XX -- [ Pg.828 ]




SEARCH



Chemistry Characterized by XPS and Sputtered Neutral Mass Spectroscopy

Sputter-initiated resonance-ionization spectroscopy

Sputtered

Sputtered neutral mass spectroscopy

Sputtered neutral mass spectroscopy SNMS)

Sputtering

Sputtering atomic spectroscopy

© 2024 chempedia.info