Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spot size

The sensitivity curves are plots of maximum achieved sensitivity as a function of thickness of the object for a given focal spot size and source to detector distance. The best attainable sensitivity in image intensifier systems is a function of tube voltage, current, scattered radiation and the screen gamma. As a first step, stainless steel plates with thicknesses ranging from 5 mm-30 mm in steps of 5 mm were chosen. These plates had a length of 950 mm and width of 280 mm. The plate is positioned very close and at the center to the LI. tube. The extraneous... [Pg.444]

This opens perspectives for obtaining phase contrast information in a microfocus tomographic system Recently we have developed a desktop X-ray microtomographic system [4] with a spot size of 8 micrometer (70 KeV) and equipped with a (1024) pixel CCD, lens coupled to a scintillator. The system is now commercially available [5], The setup is sketched in Figure 1 In this work we used the system to demonstrate the feasibility for phase contrast microtomography. [Pg.574]

The first corrected electron-optical SEM was developed by Zach [10]. Eor low-voltage SEM (LVSEM, down to 500 eV electron energy instead of the conventional energies of up to 30 keV) the spot size is extremely large without aberration correction. Combining and correction and a electrostatic objective lens, Zach showed that a substantial improvement in spot size and resolution is possible. The achievable resolution in a LVSEM is now of the order of 1-2 mn. More recently, Krivanek and colleagues succeeded in building a corrected STEM [53,M]. [Pg.1643]

Once the primary electron beam is created, it must be demagnified with condenser lenses and then focused onto the sample with objective lenses. These electron lenses are electromagnetic in nature and use electric and magnetic fields to steer the electrons. Such lenses are subject to severe spherical and chromatic aberrations. Therefore, a point primary beam source is blurred into a primary beam disk to an extent dependent on the energy and energy spread of the primary electrons. In addition, these lenses are also subject to astigmatism. AH three of these effects ultimately limit the primary beam spot size and hence, the lateral resolution achievable with sem. [Pg.271]

Fig. 19. Schematic of dual anode (typically Al and Mg) x-ray source. X-rays produced by electron bombardment of anode face 2 indicated (19). The routine dual-anode x-ray source just described generates nonmonochromatized x-rays in a relatively large spot size (ca 1 cm in diameter). In... Fig. 19. Schematic of dual anode (typically Al and Mg) x-ray source. X-rays produced by electron bombardment of anode face 2 indicated (19). The routine dual-anode x-ray source just described generates nonmonochromatized x-rays in a relatively large spot size (ca 1 cm in diameter). In...
The source requited for aes is an electron gun similar to that described above for electron microscopy. The most common electron source is thermionic in nature with a W filament which is heated to cause electrons to overcome its work function. The electron flux in these sources is generally proportional to the square of the temperature. Thermionic electron guns are routinely used, because they ate robust and tehable. An alternative choice of electron gun is the field emission source which uses a large electric field to overcome the work function barrier. Field emission sources ate typically of higher brightness than the thermionic sources, because the electron emission is concentrated to the small area of the field emission tip. Focusing in both of these sources is done by electrostatic lenses. Today s thermionic sources typically produce spot sizes on the order of 0.2—0.5 p.m with beam currents of 10 A at 10 keV. If field emission sources ate used, spot sizes down to ca 10—50 nm can be achieved. [Pg.283]

Two newer areas of implantation have been receiving attention and development. Focused ion beams have been iavestigated to adow very fine control of implantation dimensions. The beams are focused to spot sizes down to 10 nm, and are used to create single lines of ion-implanted patterns without needing to create or use a mask. Although this method has many attractive features, it is hampered by the fact that the patterning is sequential rather than simultaneous, and only one wafer rather than many can be processed at any one time. This limits the production appHcations of the technique. [Pg.350]

Focusing Laser Light. One of the most important properties of laser radiation is the abiHty to coUect all of the radiation using a simple lens and to focus it to a spot. It is not possible to focus the laser beam down to a mathematical point there is always a minimum spot size, set by the physical phenomenon of diffraction. A convenient equation is... [Pg.3]

The ratio F/d is the F number of the lens. For F numbers much less than unity, spherical aberration precludes reaching the ultimate diffraction-limited spot size. Therefore a practical limit for the minimum spot size obtainable is approximately the wavelength of the light. Commonly this is expressed as the statement that laser light may be focused to a spot with dimensions equal to its wavelength. [Pg.3]

Soft x-rays with wavelengths of 1—10 nm ate used for scanning x-ray microscopy. A zone plate is used to focus the x-ray beam to a diameter of a few tens of nanometers. This parameter fixes and limits the resolution. Holographic x-ray microscopy also utilizes soft x-rays with photoresist as detector. With a strong source of x-rays, eg, synchrotron, resolution is in the 5—20-nm range. Shadow projection x-ray microscopy is a commercially estabflshed method. The sample, a thin film or thin section, is placed very close to a point source of x-rays. The "shadow" is projected onto a detector, usually photographic film. The spot size is usually about 1 ]lni in diameter, hence the resolution cannot be better than that. [Pg.332]

It was found, that at standard gas-chromatograph sampling of 1 pL of analyte solution the limit of detection for different amines was measured as 0.1-3 ng/ml, or of about 1 femtomole of analyte in the probe. This detection limit is better of published data, obtained by conventional GC-MS technique. Evidently, that both the increasing of the laser spot size and the optimization of GC-capillary position can strongly improve the detection limit. [Pg.103]

An XPS spectrometer schematic is shown in Figure 7. The X-ray source is usually an Al- or Mg-coated anode struck by electrons from a high voltage (10—15 kV) Alka or Mgka radiation lines produced at energies of 1486.6 eV and 1256.6 eV, with line widths of about 1 eV. The X rays flood a large area (-I cm ). The beam s spot size can be improved to about lOO-jim diameter by focusing the electron beam... [Pg.292]

Future trends will include studies of grain-dependent surface adsorption phenomena, such as gas-solid reactions and surface segregation. More frequent use of the element-specific CEELS version of REELM to complement SAM in probing the conduction-band density of states should occur. As commercially available SAM instruments improve their spot sizes, especially at low Eq with field emission sources, REELM will be possible at lateral resolutions approaching 10 nm without back scattered electron problems. [Pg.333]

Infrared microscopes can focus the beam down to a 20-pm spot size for microprobing in either the transmission or reflection mode. Trace analysis, microparticle analysis, and spatial profiling can be performed routinely. [Pg.424]


See other pages where Spot size is mentioned: [Pg.214]    [Pg.536]    [Pg.570]    [Pg.571]    [Pg.580]    [Pg.580]    [Pg.1624]    [Pg.1624]    [Pg.1641]    [Pg.1642]    [Pg.1642]    [Pg.1844]    [Pg.2492]    [Pg.2492]    [Pg.12]    [Pg.283]    [Pg.356]    [Pg.3]    [Pg.3]    [Pg.122]    [Pg.139]    [Pg.51]    [Pg.307]    [Pg.77]    [Pg.195]    [Pg.280]    [Pg.298]    [Pg.307]    [Pg.324]    [Pg.328]    [Pg.328]    [Pg.329]    [Pg.330]    [Pg.331]    [Pg.333]    [Pg.336]    [Pg.393]   
See also in sourсe #XX -- [ Pg.367 ]

See also in sourсe #XX -- [ Pg.12 , Pg.58 , Pg.67 ]

See also in sourсe #XX -- [ Pg.258 ]

See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.274 ]

See also in sourсe #XX -- [ Pg.56 , Pg.58 , Pg.92 , Pg.96 , Pg.102 , Pg.120 , Pg.162 , Pg.210 , Pg.213 , Pg.214 , Pg.227 , Pg.416 , Pg.420 , Pg.427 , Pg.442 , Pg.446 , Pg.466 ]

See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.251 ]

See also in sourсe #XX -- [ Pg.238 ]

See also in sourсe #XX -- [ Pg.244 , Pg.270 ]




SEARCH



Diffraction spot size

Focal spot size

Gaussian beam, focal spot size

Laser spot size

Methods Based on Spot Size

Minimum Spot Size

Reflection bandwidth and spot size

Spot density/size

Spot size and shape

Spot size circular fiber

Spot size on the target

Spot-size measurement

© 2024 chempedia.info