Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elemental analyses, spectroscopic

Interest in the mechanism and product distribution of thermal and photochemical transformations of aryl azides led to the isolation of some nitrogen-containing derivatives of heptafulvalene. Based on elemental analysis and spectroscopic data it has been suggested tentatively that the compound isolated following vapor-phase pyrolysis of azidopentafluoro-... [Pg.135]

An intensely colored by-product of the photolysis reaction of methyl-2-azidobenzoate has been identified as the first known derivative of 3,3 -diazaheptafulvalene 70 (94LA1165). Its molecular mass was established by elemental analysis and mass spectroscopy as that of a formal nitrene dimer, whereas and NMR studies demonstrated the twofold symmetry as well as the existence of a cross-conjugated 14 7r-electron system in 70. Involving l-azido-2,3-dimethoxy-5,6-dimethoxycarbonylbenzene in thermal decomposition reactions, the azaheptafulvalene 71 could be isolated and characterized spectroscopically and by means of X-ray diffraction. Tliis unusual fulvalene can be regarded as a vinylogous derivative of azafulvalenes (96JHC1333) (Scheme 28). [Pg.136]

The following is a procedure recommended for elucidating the structure of complex organic molecules. It uses a combination of different NMR and other spectroscopic techniques. It assumes that the molecular formula has been deduced from elemental analysis or high-resolution mass spectrometry. Computer-based automated or interactive versions of similar approaches have also been devised for structural elucidation of complex natural products, such as SESAMI (systematic elucidation of structures by using artificial machine intelligence), but there is no substitute for the hard work, experience, and intuition of the chemist. [Pg.391]

One key aspect of SOMC is the determination of the structure of surface complexes at a molecular level one of the reasons being that our goal is to assess structure-activity relationships in heterogeneous catalysis, which requires a firm characterization of active sites or more exactly active site precursors. While elemental analysis is an essential first step to understand how the organometallic complex reacts with the support, it is necessary to gather spectroscopic data in order to understand what are the ligands and... [Pg.161]

Determination of the catalytically active species derived from 1 in solution. Spectrophotoraetric titration of the backbone ligand 5 with copper(II) acetate in methanol revealed formation of a dinuclear copper(ll) complex species Cu2L.3h(OAc) above a 1 2 molar ratio. A mononuclear copper(ll) species CuL 2h (6) dominates at a 1 1 molar ratio of 5 and copper(ll) acetate. Control experiments for the assignment of putative structures based on the obtained spectroscopic data included a UVA is spectroscopic titration of 5 with anhydrous sodium acetate in the presence of copper(ll) chloride and revealed that acetate is necessary for the formation of a copper (11) complex in methanol. The composition of 1 in methanol is the same as determined by elemental analysis for the sohd state. [Pg.475]

The second approach (Equation(3)) has a number of advantages over the first one (Equation(2)). The alkyl complexes are more reactive than the related alkoxides, the latter being for group 4 elements generally associated into dimers or trimers 48 also, reaction (2) liberates an alcohol which may further react with the surface of silica, whereas the alkane ( Equation(3)) is inert. It was demonstrated by various spectroscopic techniques and elemental analysis that with a silica dehydroxylated at 500 °C under vacuum, the stoichiometry of reaction (3) corresponds to n = 1.45,46 Moreover, a better control of the surface reaction was achieved with the procedure represented in Equation(3). [Pg.449]

These complexes anchored to a solid via a ligand have been tested for a number of reactions including the hydrogenation, hydroformylation, hydrosilylation, isomerization, dimerization, oligomerization, and polymerization of olefins carbonylation of methanol the water gas shift reaction and various oxidation and hydrolysis reactions (see later for some examples). In most cases, the characterization of the supported entities is very limited the surface reactions are often described on the basis of well-known chemistry, confirmed in some cases by spectroscopic data and elemental analysis. [Pg.450]

Non-reacted vinyl groups of these crosslinked polymers may be expressed by the residual unsaturation (RU). The RU is a measure for both the reactivity of the monomer and the structure of the crosslinked polymer. The RU may be determined by spectroscopic or chemical methods. For the spectroscopic determination a model compound of low molar mass is required as a reference for the standardization [217, 231, 254]. For the chemical determination a reagent of low molar mass is added to the pendant vinyl groups. Then the RU is obtained either by elemental analysis or by back-titration of the non-reacted reagent [231, 283-285]. [Pg.211]

The efficiency of the orthometallated Pd(II) complexes [Pd(NC)X]2 [39, 40] (3 in Scheme 4.3) in coordinating solvents such as DMF or DMSO was considered to be in favor of the initial dissociation of the dimers 3 into the mononuclear species 6 (Scheme 4.6). The heterolytic splitting of H2 leads to the formation of the hydride 7 plus HC1 or AcOH. The solvato-hydride intermediate 7 was characterized spectroscopically and its elemental analysis furnished [39] regrettably, no data regarding its catalytic activity were reported. [Pg.84]

The stmctures of the new compounds were assigned by elemental analysis and FUR, NMR and MS spectroscopic data (Scheme 39.1). [Pg.344]

Trace Analysis Spectroscopic Methods for Elements. Edited by J. D.Winefordner Contamination Control in Trace Element Analysis. By Morris Zief and James W. Mitchell Analytical Applications of NMR. By D. E. Leyden and R. H. Cox Measurement of Dissolved Oxygen. By Michael L. Hitchman Analytical Laser Spectroscopy. Edited by Nicolo Omenetto... [Pg.366]

The chemical structure of the polymers was confirmed by NMR and elemental analysis, and spectroscopically characterized in comparison with monodisperse low molecular weight model compounds. Scheme 5 outlines the approach to the model compounds. Model compounds 31-34 were synthesized by complexation of the ruthenium-free model ligands 29/30 with 3/4. The model ligands were synthesized in toluene/diisopropylamine, in a similar fashion as the polycondensation using Pd(PPh3)4 and Cul as catalyst (Sonogashira reaction) [34,47-49]. [Pg.64]

Optical examination of etched polished surfaces or small particles can often identify compounds or different minerals hy shape, color, optical properties, and the response to various etching attempts. A semi-quantitative elemental analysis can he used for elements with atomic number greater than four by SEM equipped with X-ray fluorescence and various electron detectors. The electron probe microanalyzer and Auer microprobe also provide elemental analysis of small areas. The secondary ion mass spectroscope, laser microprobe mass analyzer, and Raman microprobe analyzer can identify elements, compounds, and molecules. Electron diffraction patterns can be obtained with the TEM to determine which crystalline compounds are present. Ferrography is used for the identification of wear particles in lubricating oils. [Pg.169]

The formation of a monomeric amidino complex has been reported for the reaction of rhenium pentachloride with di-isopropylcarbodiimid. A composition of [ReCl4(prop 2N2CCI)] was derived from elemental analysis, spectroscopic data and the crystal structure of the molybdenum analogue. " ... [Pg.332]

Reduction of [ReOCl3(PPh3)2] with sodium dithionite in the presence of a bidentate isocyanide ligand and the isolation of a cationic tris-chelate of the composition [Re CNC3H60C2H40C3H6NC 3]" has been reported. The product was isolated as its [BPh4] salt and characterized based on elemental analysis and spectroscopic data. " ... [Pg.360]

The elemental analysis of our synthetic octosyl acid A, was correct for a non-hydrated compound. Secondly, Its 400 MHz H-NMR spectrum showed no trace of any other Isomer. Danishefsky, and Hungate (8) had reported [alp +9.1 for their synthetic octosyl acid A in good agreement with our results. In the light of the spectroscopic and analytical data obtained, we contend that our sample of synthetic octosyl acid A is pure and that the constants we report are reliable. A NMR spectrum of synthetic octosyl acid A is shown in Figure 22. [Pg.84]

Quantitative analysis of copolymers is relatively simple if one of the comonomers contains a readily determinable element or functional group. However, C,H elemental analyses are only of value when the difference between the carbon or hydrogen content of the two comonomers is sufficiently large. If the composition cannot be determined by elemental analysis or chemical means, the problem can be solved usually either by spectroscopic methods, for example, by UV measurements (e.g., styrene copolymers), by IR measurements (e.g., olefin copolymers), and by NMR measurements, or by gas chromatographic methods combined with mass spectroscopy after thermal or chemical decomposition of the samples. [Pg.87]

Mesoionic 4-amino-l,2,3,5-thiatriazoles constitute the only class of mesoionic 1,2,3,5-thiatriazoles known. They are prepared by the reaction of l-amino-l-methyl-3-phenylguanidine with approximately 2 equivalents of thionyl chloride with pyridine as solvent (88ACS(B)63>. They are obtained as the yellow 1 1 pyridine complexes (17). The dark-violet mesoionic 1,2,3,5-thiatriazole (18) was liberated on treatment with aqueous potassium carbonate (Scheme 3). The structure is established on the basis of elemental analysis and spectroscopic data. In particular, the IR spectrum is devoid of NH absorptions. Compound (18) exhibits a long-wavelength absorption at 463 nm in methanol. When mixed with an equivalent amount of pyridinium chloride, complex (17) is formed and the absorption shifts to 350 mn. The mesoionic thiatriazoles are sensitive towards mineral acids and aqueous base and although reaction takes place with 1,3-dipolarophiles such as dimethyl acetylene-dicarboxylate, a mixture of products were obtained which were not identified. [Pg.737]


See other pages where Elemental analyses, spectroscopic is mentioned: [Pg.240]    [Pg.240]    [Pg.233]    [Pg.401]    [Pg.276]    [Pg.108]    [Pg.47]    [Pg.384]    [Pg.181]    [Pg.450]    [Pg.31]    [Pg.620]    [Pg.348]    [Pg.350]    [Pg.380]    [Pg.271]    [Pg.321]    [Pg.224]    [Pg.48]    [Pg.82]    [Pg.237]    [Pg.3]    [Pg.234]    [Pg.86]    [Pg.625]    [Pg.5]    [Pg.137]    [Pg.111]    [Pg.469]    [Pg.220]    [Pg.310]    [Pg.93]   


SEARCH



Elements spectroscopic analysis

Spectroscopic analysis

© 2024 chempedia.info