Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific surfaces pores

Precursor Ref. Surfactant Specific surface Pore size 0... [Pg.630]

Characteristics of the matrix specific surface, pore diameter, impurities, porous/non-porous particles etc. [Pg.109]

The chemical constitution and structural factors of solid catalyst such as phase composition, surface distribution, crystal texture, crystallite dimensions, specific surface, pore structure and etc., are the dominant factors of the catalytic properties. The progresses in the modern physical methods and equipments have paved the way for the study of catalysts. [Pg.608]

The specific surface area of a solid is one of the first things that must be determined if any detailed physical chemical interpretation of its behavior as an adsorbent is to be possible. Such a determination can be made through adsorption studies themselves, and this aspect is taken up in the next chapter there are a number of other methods, however, that are summarized in the following material. Space does not permit a full discussion, and, in particular, the methods that really amount to a particle or pore size determination, such as optical and electron microscopy, x-ray or neutron diffraction, and permeability studies are largely omitted. [Pg.572]

In discussions of the surface properties of solids having a large specific surface, it is convenient to distinguish between the external and the internal surface. The walls of pores such as those denoted by heavy lines in Fig. 1.8 and 1.11 clearly comprise an internal surface and equally obviously the surface indicated by lightly drawn lines is external in nature. In many cases, however, the distinction is not so clear, for the surfaces of the primary particles themselves suffer from imperfections in the forms of cracks and fissures those that penetrate deeply into the interior will contribute to the internal surface, whereas the superficial cracks and indentations will make up part of the external surface. The line of demarcation between the two kinds of surface necessarily has to be drawn in an arbitrary way, but the external surface may perhaps be taken to include all the prominences and all of those cracks which are wider than they are deep.,The internal surface will... [Pg.23]

An interesting example of a large specific surface which is wholly external in nature is provided by a dispersed aerosol composed of fine particles free of cracks and fissures. As soon as the aerosol settles out, of course, its particles come into contact with one another and form aggregates but if the particles are spherical, more particularly if the material is hard, the particle-to-particle contacts will be very small in area the interparticulate junctions will then be so weak that many of them will become broken apart during mechanical handling, or be prized open by the film of adsorbate during an adsorption experiment. In favourable cases the flocculated specimen may have so open a structure that it behaves, as far as its adsorptive properties are concerned, as a completely non-porous material. Solids of this kind are of importance because of their relevance to standard adsorption isotherms (cf. Section 2.12) which play a fundamental role in procedures for the evaluation of specific surface area and pore size distribution by adsorption methods. [Pg.24]

A Type II isotherm indicates that the solid is non-porous, whilst the Type IV isotherm is characteristic of a mesoporous solid. From both types of isotherm it is possible, provided certain complications are absent, to calculate the specific surface of the solid, as is explained in Chapter 2. Indeed, the method most widely used at the present time for the determination of the surface area of finely divided solids is based on the adsorption of nitrogen at its boiling point. From the Type IV isotherm the pore size distribution may also be evaluated, using procedures outlined in Chapter 3. [Pg.37]

Isotherms of Type 111 and Type V, which are the subject of Chapter 5, seem to be characteristic of systems where the adsorbent-adsorbate interaction is unusually weak, and are much less common than those of the other three types. Type III isotherms are indicative of a non-porous solid, and some halting steps have been taken towards their use for the estimation of specific surface but Type V isotherms, which betoken the presence of porosity, offer little if any scope at present for the evaluation of either surface area or pore size distribution. [Pg.37]

As will be demonstrated in Chapter 4, an isotherm which is reversible and of Type II is quite compatible with the presence of micropores. If such pores are present, the isotherm will be distorted in the low-pressure region, the value of c will be greatly enhanced, and the specific surface derived by the BET procedure will be erroneously high. In particular, a BET specific surface in excess of - 500m g" should be taken as a warning that... [Pg.103]

Type IV isotherms are often found with inorganic oxide xerogels and other porous solids. With certain qualifications, which will be discussed in this chapter, it is possible to analyse Type IV isotherms (notably those of nitrogen at 77 K) so as to obtain a reasonable estimate of the specific surface and an approximate assessment of the pore size distribution. [Pg.111]

In the pioneer work of Foster the correction due to film thinning had to be neglected, but with the coming of the BET and related methods for the evaluation of specific surface, it became possible to estimate the thickness of the adsorbed film on the walls. A number of procedures have been devised for the calculation of pore size distribution, in which the adsorption contribution is allowed for. All of them are necessarily somewhat tedious and require close attention to detail, and at some stage or another involve the assumption of a pore model. The model-less method of Brunauer and his colleagues represents an attempt to postpone the introduction of a model to a late stage in the calculations. [Pg.134]

The evaluation of pore size distribution by application of the Kelvin equation to Type IV isotherms has hitherto been almost entirely restricted to nitrogen as adsorptive. This is largely a reflection of the widespread use of nitrogen for surface area determination, which has meant that both the pore size distribution and the specific surface can be derived from the same isotherm. [Pg.166]

At the point where capillary condensation commences in the finest mesopores, the walls of the whole mesopore system are already coated with an adsorbed film of area A, say. The quantity A comprises the area of the core walls and is less than the specific surface A (unless the pores happen to be parallel-sided slits). When capillary condensation takes place within a pore, the film-gas interface in that pore is destroyed, and when the pore system is completely filled with capillary condensate (e.g. at F in Fig. 3.1) the whole of the film-gas interface will have disappeared. It should therefore be possible to determine the area by suitable treatment of the adsorption data for the region of the isotherm where capillary condensation is occurring. [Pg.169]

To convert the core area into the pore area ( = specific surface, if the external area is negligible) necessitates the use of a conversion factor R which is a function not only of the pore model but also of both r and t (cf. p. 148). Thus, successive increments of the area under the curve have to be corrected, each with its appropriate value of R. For the commonly used cylindrical model,... [Pg.171]

The table convincingly demonstrates how the unsuspected presence of micropores can lead to an erroneous value of the specific surface calculated from a Type II isotherm by application of the standard BET procedure. According to the foregoing analysis, the external specific surface of the solid is 114m g" the micropore volume (from the vertical separation of isotherms A and E) is 105 mm g but since the average pore width is not precisely known, the area of the micropore walls cannot be calculated. Thus the BET figure of 360m g calculated from isotherm E represents merely an apparent and not a true surface area. [Pg.214]

In writing the present book our aim has been to give a critical exposition of the use of adsorption data for the evaluation of the surface area and the pore size distribution of finely divided and porous solids. The major part of the book is devoted to the Brunauer-Emmett-Teller (BET) method for the determination of specific surface, and the use of the Kelvin equation for the calculation of pore size distribution but due attention has also been given to other well known methods for the estimation of surface area from adsorption measurements, viz. those based on adsorption from solution, on heat of immersion, on chemisorption, and on the application of the Gibbs adsorption equation to gaseous adsorption. [Pg.292]

Characterization. When siHca gel is used as an adsorbent, the pore stmcture determines the gel adsorption capacity. Pores are characterized by specific surface area, specific pore volume (total volume of pores per gram of solid), average pore diameter, pore size distribution, and the degree to which entrance to larger pores is restricted by smaller pores. These parameters are derived from measuring vapor adsorption isotherms, mercury intmsion, low angle x-ray scattering, electron microscopy, gas permeabiHty, ion or molecule exclusion, or the volume of imbibed Hquid (1). [Pg.491]

Soaking a siUca gel in dilute ammonium hydroxide solution at 50—85°C can result in significant coarsening of the gel texture (5). Aging and thermal treatments result in a one-way process, ie, loss of specific surface area and in increase in pore size. The pore size can also be enlarged by dissolution of some of the siUca. Treating a siUca gel with O.S-N KOH or dilute HF can enlarge the pores from 0.7 to 3.7 nm (3). [Pg.253]

Physical properties of catalysts also may need to be checked periodically, includiug pellet size, specific surface, porosity, pore size and size distribution, and effective diffusivity. The effectiveness of a porous catalyst is found by measuring conversions with successively smaller pellets until no further change occurs. These topics are touched on by Satterfield (Heterogeneous Cataly.sls in Jndustiial Practice, McGraw-Hill, 1991). [Pg.708]

Specific. surface of solid spheres of 0.1 mm (0.0039 in) dia is 0.06 mVml (18,300 ftVfF) and a porous activated alumina pellet has about 600 mVml (1.83 X 10 ftVfF). Other considerations aside, a large surface is desirable because the rate of reaction is proportional to the accessible surface. On the other hand, large specific surface means pores of small diameter. [Pg.2095]

Commercially available pre-coated plates with a variety of adsorbents are generally very good for quantitative work because they are of a standard quality. Plates of a standardised silica gel 60 (as medium porosity silica gel with a mean porosity of 6mm) released by Merck have a specific surface of 500 m /g and a specific pore volume of 0.75 mL/g. They are so efficient that they have been called high performance thin layer chromatography (HPTLC) plates (Ropphahn and Halpap J Chromatogr 112 81 1975). In another variant of thin layer chromatography the... [Pg.18]

Aluminium oxide is available in grades with neutral, acidic and basic reactions, which can also vary in the specific surface area and pore size. This makes the separations achieved vary and care must be taken to document precisely. [Pg.123]

The macroporous particles prepared by using only linear polystyrene as diluent yielded lower pore volume and specific surface area values. [Pg.221]

The pore volume and the specific surface area of the uniform macroporous particles increased and the average pore size decreased with the increasing divinylbenzene concentration within the monomer phase. [Pg.221]

In which the ratio m/n is close to 3. The silane was produced by free radical copolymerization of vinyltriethoxysilane with N-vinylpyrrolidone. Its number-average molecular weight evaluated by vapour-phase osmometry was 3500. Porous silica microballs with a mean pore diameter of 225 A, a specific surface area (Ssp) of 130 m2/g and a pore volume of 0.8 cm3/g were modified by the silane dissolved in dry toluene. After washings and drying, 0.55% by weight of nitrogen and 4.65% of carbon remained on the microballs. Chromatographic tests carried out with a series of proteins have proved the size-exclusion mechanism of their separation. [Pg.148]

Some authors have suggested the use of fluorene polymers for this kind of chromatography. Fluorinated polymers have attracted attention due to their unique adsorption properties. Polytetrafluoroethylene (PTFE) is antiadhesive, thus adsorption of hydrophobic as well as hydrophilic molecules is low. Such adsorbents possess extremely low adsorption activity and nonspecific sorption towards many compounds [109 111]. Fluorene polymers as sorbents were first suggested by Hjerten [112] in 1978 and were tested by desalting and concentration of tRN A [113]. Recently Williams et al. [114] presented a new fluorocarbon sorbent (Poly F Column, Du Pont, USA) for reversed-phase HPLC of peptides and proteins. The sorbent has 20 pm in diameter particles (pore size 30 nm, specific surface area 5 m2/g) and withstands pressure of eluent up to 135 bar. There is no limitation of pH range, however, low specific area and capacity (1.1 mg tRNA/g) and relatively low limits of working pressure do not allow the use of this sorbent for preparative chromatography. [Pg.167]

Large yields of polymer seem to be obtained only when polymerization proceeds on the outer catalyst surface, because the transport of high molecular polyethylene from catalyst pores is impossible (112). The working part of the specific surface of the catalyst can be expected to increase with diminishing strength of links between catalyst particles (112). Therefore, to obtain a highly active catalyst a support with large pore volume should be used (e.g. silica with pore volume >1.5 cm8/g). [Pg.181]


See other pages where Specific surfaces pores is mentioned: [Pg.241]    [Pg.12]    [Pg.352]    [Pg.241]    [Pg.12]    [Pg.352]    [Pg.406]    [Pg.670]    [Pg.38]    [Pg.105]    [Pg.173]    [Pg.187]    [Pg.283]    [Pg.3]    [Pg.383]    [Pg.487]    [Pg.491]    [Pg.249]    [Pg.253]    [Pg.257]    [Pg.529]    [Pg.512]    [Pg.504]    [Pg.1599]    [Pg.630]    [Pg.69]    [Pg.158]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Pore surface

Specific surface

Surface specificity

Surface specifity

© 2024 chempedia.info