Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Space solid surfaces

Crystal growth is a diffusion and integration process, modified by the effect of the solid surfaces on which it occurs (Figure 5.3). Solute molecules/ions reach the growing faces of a crystal by diffusion through the liquid phase. At the surface, they must become organized into the space lattice through an... [Pg.125]

Another method of simulating chemical reactions is to separate the reaction and particle displacement steps. This kind of algorithm has been considered in Refs. 90, 153-156. In particular. Smith and Triska [153] have initiated a new route to simulate chemical equilibria in bulk systems. Their method, being in fact a generalization of the Gibbs ensemble Monte Carlo technique [157], has also been used to study chemical reactions at solid surfaces [90]. However, due to space limitations of the chapter, we have decided not to present these results. [Pg.229]

The three principal catalyst bed configurations are the pellet bed, the monolith, and the metallic wire meshes. An open structure with large openings is needed to fulfill the requirement of a low pressure drop even at the very high space velocities of 200,000 hr-1. On the other hand, packings with small diameters would provide more external surface area to fulfill the requirement for rapid mass transfer from the g .s stream to the solid surface. The compromise between these two ideals results in a rather narrow range of dimensions pellets are from to 1 in. in diameter, monoliths have 6 to 20 channels/in., and metallic meshes have diameters of about 0.004 to 0.03 in. [Pg.82]

Apart from obvious features such as laminarity, there are speculations that flows in micro channels exhibit a behavior deviating from predictions of macroscopic continuum theory. In the case of gas flows, these deviations, manifesting themselves as, e.g., velocity slip at solid surfaces, are comparatively well understood (for an overview, see [130]). However, for liquid flows on a length scale above 1 pm, there is no clear theoretical foundation for deviations from continuum behavior. Nevertheless, various unexpected phenomena such as friction factors deviating from the continuum prediction [131-133] have been reported. A more detailed discussion of this still unsettled matter is given in Section 2.2. At any rate, one has to be careful here since it may be that measurements in small systems lack precision, essentially because of the incompatibility of analysis in a confined space and with large measuring equipment... [Pg.49]

In the lower region of the unsaturated zone, immediately above the water table, is the capillary fringe, where water is drawn upward by capillary attraction. Above the capillary fringe, moisture coats the solid surfaces of the soil or rock particles. If the liquid coating becomes too thick to be held by surface tension, a droplet will pull away and be drawn downward by gravity. The fluid can also evaporate and move through the air space in the pores as water vapor. [Pg.694]

As the two particles approach each other, the first contact will be made by the outer binder layers the liquid will subsequently be squeezed out from the space between the particles to the point where the two solid surfaces will touch. A solid rebound will occur based on the elasticity of the surface... [Pg.380]

The surface area of a solid material is important in that it provides information on the available void spaces on the surfaces of a powdered solid [48]. In addition, the dissolution rate of a solid is partially determined by its surface area. The most reproducible measurements of the surface area of a solid are obtained by adsorbing a monolayer of inert gas onto the solid surface at reduced temperature and subsequently desorbing this gas at room temperature. The sorption isotherms obtained in this technique are interpreted using the equations developed by Brunauer, Emmett, and Teller, and therefore the technique is referred to as the B.E.T. method [49]. The surface area is obtained in units of square meters of surface per gram of material. [Pg.19]

The diffuse layer of excess electrons and holes in solids is called the space charge layer and the diffuse layer of excess hydrated ions in aqueous solution is simply called the diffuse layer and occasionally called the Gouy layer [Gouy, 1917]. The middle layer of adsorbed water moleciiles, between the diffuse layer on the aqueous solution side and the space charge layer on the soUd side, is called the compact or the inner layer. This compact or inner layer is also called the Helmholtz layer [Helmholtz, 1879] or the Stem layer [Stem, 1924] the plane of the closest approach of hydrated ions to the solid surface is called the outer Helmholtz plane (OHP) [Graham, 1947]. [Pg.128]

Figure 13.2. Schematic representation of the contraction in interlayer spacing usually observed at clean solid surfaces. (From Ref 1, p. 41, with permission from Wiley.)... Figure 13.2. Schematic representation of the contraction in interlayer spacing usually observed at clean solid surfaces. (From Ref 1, p. 41, with permission from Wiley.)...
For a p-type semiconductor, (psc results from the excess negative charge associated with the ionized acceptors in the space charge region of the solid, and cpn is due to the accumulation of a positive ion layer ( 1 nm thick, from the solid surface) in the... [Pg.136]

Mechanisms of Flame Stabilization. CRITICAL BOUNDARY VELOCITY GRADIENT. A flame stabilized at the port of a Bunsen burner does not actually touch the rim. There is a dark region, called the dead space, between the rim and the flame. Heat is removed and free radicals are destroyed by the solid surface the burning velocity is reduced to zero and the flame is quenched. Even beyond the dead space, where the flame is able to exist as a luminous reaction zone, the burning velocity only gradually rises to the value achieved at a distance from solid surfaces. [Pg.179]

Mineral Surfaces. Organic matter is chemically adsorbed (deriva-tized) at the surfaces of clay minerals, zeolites, and related minerals (105) and is at times protected, concentrated, and degraded by contact with the solid surfaces. For example, porphyrins are protected (106), as are optically active amino acids by montmorillonite (107). This may result in part from the position of the organic matter in lattice spaces, as shown by Stevenson and Cheng (108) for proteinaceous substances keyed into hexagonal holes on interlamellar surfaces of expanding lattice clays, or from the fact that there are ordered structures at solid-water interfaces (109). [Pg.16]

The effect of constraints introduced by confining diblock copolymers between two solid surfaces was examined by Lambooy et al. (1994) and Russell et al. (1995). They studied a symmetric PS-PMMA diblock sandwiched between a silicon substrate, and silicon oxide evaporated onto the top (homopolymer PMMA) surface. Neutron reflectivity showed that lamellae formed parallel to the solid interfaces with PMMA at both surfaces. The period of the confined multilayers deviated from the bulk period in a cyclic manner as a function of the confined film thickness, as illustrated in Fig. 2.60. First-order transitions were observed at t d0 = (n + j)d0, where t is the film thickness and d0 is the bulk lamellar period, between expanded states with n layers and states with (n + 1) layers where d was contracted. Finally, the deviation from the bulk lamellar spacing was found to decrease with increasing film thickness (Lambooy et al. 1994 Russell et al. 1995). These experimental results are complemented by the phenomenologi-... [Pg.116]

The detailed design of chiral reaction spaces for asymmetric catalysis on surfaces is still a serious challenge [1, 26, 27]. The chemistry of homogeneous metal complexes in solution can not straightforwardly be transferred to chemistry on solid surfaces, and both catalytic activity and enantioselectivity in homogeneous systems often decrease upon simple immobilization of the homogeneous meal complexes on surfaces. [Pg.44]

Atoms at solid surfaces have missing neighbors on one side. Driven by this asymmetry the topmost atoms often assume a structure different from the bulk. They might form dimers or more complex structures to saturate dangling bonds. In the case of a surface relaxation the lateral or in-plane spacing of the surface atoms remains unchanged but the distance between the topmost atomic layers is altered. In metals for example, we often find a reduced distance for the first layer (Table 8.1). The reason is the presence of a dipole layer at the metal surface that results from the distortion of the electron wavefunctions at the surface. [Pg.147]

Graphitic BN (h-BN) is used as lubricant with low friction in numerous applications. Compared to graphite the h-BN can be used as lubricant in an oxidizing atmosphere up to 900 °C as well as at extremely low temperatures, e.g., in space because no water inclusions between the atomic sheet layers are present (graphite always contains small amounts of water between the layers). Due to its excellent resistance against oxidation, its extremely low friction coefficient, and its chemical inertness, h-BN can be inserted into alloys or ceramics [105]. It can be used as a solid surface lubricant [106] or added to a liquid to get dispersions with lubricating properties. [Pg.17]

Krypton adsorption at 77 K is often used for the determination of relatively low solid-surface areas. At this temperature the vapour pressure of krypton (and so the dead-space correction) is small, and a reasonable precision is attainable. [Pg.136]


See other pages where Space solid surfaces is mentioned: [Pg.2842]    [Pg.85]    [Pg.131]    [Pg.276]    [Pg.170]    [Pg.78]    [Pg.669]    [Pg.621]    [Pg.652]    [Pg.147]    [Pg.84]    [Pg.268]    [Pg.9]    [Pg.88]    [Pg.115]    [Pg.15]    [Pg.77]    [Pg.196]    [Pg.418]    [Pg.425]    [Pg.130]    [Pg.31]    [Pg.62]    [Pg.519]    [Pg.166]    [Pg.171]    [Pg.25]    [Pg.588]    [Pg.17]    [Pg.179]    [Pg.255]    [Pg.206]    [Pg.169]   
See also in sourсe #XX -- [ Pg.1020 , Pg.1022 ]

See also in sourсe #XX -- [ Pg.1020 , Pg.1022 ]




SEARCH



Solids spacing

Surface spacing

© 2024 chempedia.info