Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects substitution reactions

The same conclusion was reached in a kinetic study of solvent effects in reactions of benzenediazonium tetrafluoroborate with substituted phenols. As expected due to the difference in solvation, the effects of para substituents are smaller in protic than in dipolar aprotic solvents. Alkyl substitution of phenol in the 2-position was found to increase the coupling rate, again as would be expected for electron-releasing substituents. However, this rate increase was larger in protic than in dipolar aprotic solvents, since in the former case the anion solvation is much stronger to begin with, and therefore steric hindrance to solvation will have a larger effect (Hashida et al., 1975 c). [Pg.376]

Qualitative Theory of Solvent Effects on Reaction Rates 165 Table 5-4. Predicted solvent effects on rates of nucleophilic substitution reactions [16, 44-46],... [Pg.165]

To speak of dipolar non-HBD solvents having an accelerating effect on the rates of bimolecular substitution reactions involving anionic nucleophiles seems to be looking at things in reverse order. The view that protic solvents have a retarding effect on such reactions seems to be much more consistent with the experimental data. However, the above mentioned description of the protic/ dipolar non-HBD solvent effect on reaction rates has been widely used in the literature. [Pg.248]

Solvent Effects on the Rate of Substitution by the S 2 Mechanism Polar solvents are required m typical bimolecular substitutions because ionic substances such as the sodium and potassium salts cited earlier m Table 8 1 are not sufficiently soluble m nonpolar solvents to give a high enough concentration of the nucleophile to allow the reaction to occur at a rapid rate Other than the requirement that the solvent be polar enough to dis solve ionic compounds however the effect of solvent polarity on the rate of 8 2 reactions IS small What is most important is whether or not the polar solvent is protic or aprotic Water (HOH) alcohols (ROH) and carboxylic acids (RCO2H) are classified as polar protic solvents they all have OH groups that allow them to form hydrogen bonds... [Pg.346]

Equation 4 can be classified as S, , ie, substitution nucleophilic bimolecular (221). The rate of the reaction is influenced by several parameters basicity of the amine, steric effects, reactivity of the alkylating agent, and solvent polarity. The reaction is often carried out in a polar solvent, eg, isopropanol, which may increase the rate of reaction and make handling of the product easier. [Pg.380]

Studies of reaction mechanisms ia O-enriched water show the foUowiag cleavage of dialkyl sulfates is primarily at the C—O bond under alkaline and acid conditions, and monoalkyl sulfates cleave at the C—O bond under alkaline conditions and at the S—O bond under acid conditions (45,54). An optically active half ester (j -butyl sulfate [3004-76-0]) hydroly2es at 100°C with iaversion under alkaline conditions and with retention plus some racemization under acid conditions (55). Effects of solvent and substituted stmcture have been studied, with moist dioxane giving marked rate enhancement (44,56,57). Hydrolysis of monophenyl sulfate [4074-56-0] has been similarly examined (58). [Pg.199]

These effects can be attributed mainly to the inductive nature of the chlorine atoms, which reduces the electron density at position 4 and increases polarization of the 3,4-double bond. The dual reactivity of the chloropteridines has been further confirmed by the preparation of new adducts and substitution products. The addition reaction competes successfully, in a preparative sense, with the substitution reaction, if the latter is slowed down by a low temperature and a non-polar solvent. Compounds (12) and (13) react with dry ammonia in benzene at 5 °C to yield the 3,4-adducts (IS), which were shown by IR spectroscopy to contain little or none of the corresponding substitution product. The adducts decompose slowly in air and almost instantaneously in water or ethanol to give the original chloropteridine and ammonia. Certain other amines behave similarly, forming adducts which can be stored for a few days at -20 °C. Treatment of (12) and (13) in acetone with hydrogen sulfide or toluene-a-thiol gives adducts of the same type. [Pg.267]

Diels-Alder reactions, 4, 842 flash vapour phase pyrolysis, 4, 846 reactions with 6-dimethylaminofuKenov, 4, 844 reactions with JV,n-diphenylnitrone, 4, 841 reactions with mesitonitrile oxide, 4, 841 structure, 4, 715, 725 synthesis, 4, 725, 767-769, 930 theoretical methods, 4, 3 tricarbonyl iron complexes, 4, 847 dipole moments, 4, 716 n-directing effect, 4, 44 2,5-disubstituted synthesis, 4, 116-117 from l,3-dithiolylium-4-olates, 6, 826 electrocyclization, 4, 748-750 electron bombardment, 4, 739 electronic deformation, 4, 722-723 electronic structure, 4, 715 electrophilic substitution, 4, 43, 44, 717-719, 751 directing effects, 4, 752-753 fluorescence spectra, 4, 735-736 fluorinated derivatives, 4, 679 H NMR, 4, 731 Friedel-Crafts acylation, 4, 777 with fused six-membered heterocyclic rings, 4, 973-1036 fused small rings structure, 4, 720-721 gas phase UV spectrum, 4, 734 H NMR, 4, 7, 728-731, 939 solvent effects, 4, 730 substituent constants, 4, 731 halo... [Pg.894]

The range of nueleophiles whieh have been observed to partieipate in nueleophilie aromatie substitution is similar to that for S[, 2 reactions and includes alkoxides, phenoxides, sulftdes, fluoride ion, and amines. Substitutions by earbanions are somewhat less common. This may be because there are frequently complications resulting from eleetron-transfer proeesses with nitroaromatics. Solvent effects on nucleophilic aromatic substitutions are similar to those discussed for S 2 reactions. Dipolar... [Pg.591]

Substitution means the replacement of a hazardous material or process with an alternative which reduces or eliminates the hazard. Process designers, line managers, and plant technical staff should continually ask if less hazardous alternatives can be effectively substituted for all hazardous materials used in a manufacturing process. Examples of substitution in two categories are discussed—reaction chemistry and solvent usage. There are many other areas where opportunities for substitution of less hazardous materials can be found, for example, materials of construction, heat transfer media, insulation, and shipping containers. [Pg.36]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

Most of the kinetic measures of solvent effects have been developed for the study of nucleophilic substitution (Sn) at saturated carbon, solvolytic reactions in particular. It may, therefore, be helpful to give a brief review of aliphatic nucleophilic substitution. Two mechanistic routes have been clearly identified. One of these is shown by... [Pg.427]

Detailed kinetic studies of the substitution reactions of anions with heterocyclic compounds to include, for example, the effects of solvent, added salts, and ion pair formation have not been made as yet. [Pg.292]

Resonance energies and tautomerism of substituted aromatic heterocycles and their benzo derivatives Reaction-field-supermolecule approach to calculation of solvent effects... [Pg.87]

Tliis interpretation is based only upon the structural and electronic properties of the pyridinium cations. Tire calculation of relative activation Ijarri-ers for the competing substitution reactions will give more reliable results —especially if solvent effects are included in the calculations. In order to assess the reliability of actual theoretical methods as applied to model sys-... [Pg.196]

Esters can also be synthesized by an acid-catalyzed nucleophilic acyl substitution reaction of a carboxylic acid with an alcohol, a process called the Fischer esterification reaction. Unfortunately, the need to use an excess of a liquid alcohol as solvent effectively limits the method to the synthesis of methyl, ethyl, propyl, and butyl esters. [Pg.795]

The wide variation in the entropy factors for both the substituted phenyl and heterocyclic compounds and in particular for the methoxyphenyl and furan derivatives was considered to be strong evidence for solvent effects being predominant in determining the activation entropy. Consequently, discussion of the substituent effects in terms of electronic factors alone requires caution in this reaction. Caution is also needed since rates for the substituted phenyl compounds were only determined over a 20 °C range. The significance of entropy factors has also been indicated by the poor correlation of the data of the electrophilic reactivities of the heterocyclic compounds, as derived from protodemercuration, with the data for other electrophilic substitutions and related reactions572. [Pg.287]

The Diels-Alder reaction can be greatly enhanced by high pressure (Chapter 5) but the effect of pressure is generally weaker in aqueous medium than in organic solvent. Results of high pressure-mediated Diels-Alder reactions of furans and acrylates in water and dichloromethane are reported in Table 6.6 [32]. In aqueous medium the cycloadditions occur with lower yields and less diastereoselectivity than in dichloromethane and, in some cases, addition-substitution reactions were observed. [Pg.267]

The second group of studies tries to explain the solvent effects on enantioselectivity by means of the contribution of substrate solvation to the energetics of the reaction [38], For instance, a theoretical model based on the thermodynamics of substrate solvation was developed [39]. However, this model, based on the determination of the desolvated portion of the substrate transition state by molecular modeling and on the calculation of the activity coefficient by UNIFAC, gave contradictory results. In fact, it was successful in predicting solvent effects on the enantio- and prochiral selectivity of y-chymotrypsin with racemic 3-hydroxy-2-phenylpropionate and 2-substituted 1,3-propanediols [39], whereas it failed in the case of subtilisin and racemic sec-phenetyl alcohol and traws-sobrerol [40]. That substrate solvation by the solvent can contribute to enzyme enantioselectivity was also claimed in the case of subtilisin-catalyzed resolution of secondary alcohols [41]. [Pg.13]

With regard to the promoting effect of Ag+ in bromine/amine substitution reactions, one must address the problem of the complexation of Ag+ by amines in organic solvents (F. Pulidori, M. Remelli, F. D Angeli, P. Marchetti, work in progress). [Pg.169]

Ejfect ofSolvent. In addition to the solvent effects on certain SeI reactions, mentioned earlier (p. 764), solvents can influence the mechanism that is preferred. As with nucleophilic substitution (p. 448), an increase in solvent polarity increases the possibility of an ionizing mechanism, in this case SeI, in comparison with the second-order mechanisms, which do not involve ions. As previously mentioned (p. 763), the solvent can also exert an influence between the Se2 (front or back) and SeI mechanisms in that the rates of Se2 mechanisms should be increased by an increase in solvent polarity, while Sni mechanisms are much less affected. [Pg.769]

Ordinary ketones are generally much more difficult to cleave than trihalo ketones or p-diketones, because the carbanion intermediates in these cases are more stable than simple carbanions. However, nonenolizable ketones can be cleaved by treatment with a 10 3 mixture of t-BuOK—H2O in an aprotic solvent such as ether, dimethyl sulfoxide, 1,2-dimethoxyethane (glyme), and so on, or with sohd t-BuOK in the absence of a solvent. When the reaction is applied to monosubstituted diaryl ketones, that aryl group preferentially cleaves that comes off as the more stable carbanion, except that aryl groups substituted in the ortho position are more readily cleaved than otherwise because of the steric effect (relief of stain). In certain cases, cyclic ketones can be cleaved by base treatment, even if they are enolizable. " OS VI, 625. See also OS VH, 297. [Pg.814]


See other pages where Solvent effects substitution reactions is mentioned: [Pg.30]    [Pg.150]    [Pg.314]    [Pg.93]    [Pg.204]    [Pg.645]    [Pg.361]    [Pg.2224]    [Pg.2593]    [Pg.180]    [Pg.262]    [Pg.766]    [Pg.298]    [Pg.368]    [Pg.387]    [Pg.301]    [Pg.288]    [Pg.307]    [Pg.620]    [Pg.302]    [Pg.224]    [Pg.516]    [Pg.17]   
See also in sourсe #XX -- [ Pg.494 ]

See also in sourсe #XX -- [ Pg.5 , Pg.494 ]




SEARCH



Nucleophilic substitution reactions solvent effects

Solvent effects substitution

Solvent effects, reaction coordinates, and reorganization energies on nucleophilic substitution

Solvent effects, reaction coordinates, and reorganization energies on nucleophilic substitution reactions in aqueous solution

Solvent substitution

Solvents substitution reactions

© 2024 chempedia.info