Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent coffee

C8H10N4O2. An alkaloid occurring in tea, coffee and guarana, from which it may be prepared by extraction, It is also manufactured by the methylation of theobromine and by the condensation of cyanoacetic acid with urea. Crystallizes with H2O or anhydrous from organic solvents. M.p. (anhydrous) 235"C, sublimes at 176 C. Odourless, and with a very bitter taste. Caffeine acts as a stimulant and diuretic, and is a constituent of cola drinks, tea and coffee. [Pg.75]

Bot nic l nd Animal Extracts. Tinctures and fluid and soHd extracts of items such as vanilla, coffee, cocoa, and Hcorice are produced by treating the raw materials with a solvent. Vanilla is by far the most widely used extract and is often found in chocolate products, baked goods, beverages, and frozen desserts (49,52). [Pg.440]

Highly pure / -hexane is used to extract oils from oilseeds such as soybeans, peanuts, sunflower seed, cottonseed, and rapeseed. There has been some use of hydrocarbons and hydrocarbon-derived solvents such as methylene chloride to extract caffein from coffee beans, though this use is rapidly being supplanted by supercritical water and/or carbon dioxide, which are natural and therefore more acceptable to the pubHc. [Pg.368]

Bl cetyl. Biacetyl [431-03-8] (2,3-butanedione) is a greenish yeUow liquid with a quinone odor. Biacetyl occurs naturally in bay oil and is readily soluble in organic solvents. It is a constituent of many food aromas, eg, butter, and is commonly used to flavor margarine. Flavor-grade biacetyl was available at 20.40/kg in July 1993, and is used as an odorant for coffee, vinegar, tobacco, and in perfumes. [Pg.498]

Trichloroethylene was approved for use for many years as an extraction solvent for foods. In late 1977, the Eood and Dmg Administration (EDA) harmed its use as a food additive, direcdy or indirecdy, prohibiting the use in hop extraction, decaffeination of coffee, isolation of spice oleoresins, and other apphcations. The EDA also harmed the use of trichloroethylene in cosmetic and dmg products (23). [Pg.25]

Decaffeinated coffee products represented 18% of the coffee consumed in 1991 in the United States (31). Decaffeinated coffee was first developed commercially in Europe about 1900. The process as described in a 1908 patent (35) consists of first, moisturizing green coffee to at least 20% to facilitate transport of caffeine through the cell wall, and then contacting the moistened beans with solvents. [Pg.389]

To make an instant decaffeinated coffee product, the decaffeinated roast and ground coffee is extracted in a manner similar to nondecaffeinated coffee. Alternatively, the caffeine from the extract of untreated roasted coffee is removed by using the solvents described previously. [Pg.389]

Decaffeination Regulations. Eor decaffeinated roasted coffee, EEC standards indicate the maximum content of caffeine as 0.1% db for decaffeinated instant coffee it is 0.3% db. In the United States, decaffeination usually signifies that 97% of the caffeine has been removed. Permissible solvents for decaffeination processes are defined by national legislation, eg, EDA or EEC directive. The maximum residual solvent content after decaffeination, roasting, or instant coffee processing is to be kept within good manufacturing practice, ie, very low ppm levels or below at point of sale (46). [Pg.390]

Above the critical temperature and pressure, a substance is referred to as a supercritical fluid. Such fluids have unusual solvent properties that have led to many practical applications. Supercritical carbon dioxide is used most commonly because it is cheap, nontoxic, and relatively easy to liquefy (critical T = 31°C, P = 73 atm). It was first used more than 20 years ago to extract caffeine from coffee dichloromethane, CH2C12, long used for this purpose, is both a narcotic and a potential carcinogen. Today more than 10s metric tons of decaf coffee are made annually using supercritical C02. It is also used on a large scale to extract nicotine from tobacco and various objectionable impurities from the hops used to make beer. [Pg.232]

Polycarbonate It is a tough, transparent plastic that offers resistance to bullets and thrown projectiles in glazing for vehicles, buildings, and security installations. It with stands boiling water, but is less resistant to weather and scratching than acrylics. It is notch-sensitive and has poor solvent resistance in stressed molded products. Use includes coffee makers, food blenders, automobile lenses, safety helmets, lenses, and many nonburning electrical applications. [Pg.428]

The dense fluid that exists above the critical temperature and pressure of a substance is called a supercritical fluid. It may be so dense that, although it is formally a gas, it is as dense as a liquid phase and can act as a solvent for liquids and solids. Supercritical carbon dioxide, for instance, can dissolve organic compounds. It is used to remove caffeine from coffee beans, to separate drugs from biological fluids for later analysis, and to extract perfumes from flowers and phytochemicals from herbs. The use of supercritical carbon dioxide avoids contamination with potentially harmful solvents and allows rapid extraction on account of the high mobility of the molecules through the fluid. Supercritical hydrocarbons are used to dissolve coal and separate it from ash, and they have been proposed for extracting oil from oil-rich tar sands. [Pg.440]

In some cases, the solids themselves are subjected to extraction by a solvent. For example, in one process used to decaffeinate coffee, the coffee beans are mixed with activated charcoal and a high-pressure stream of supercritical carbon dioxide (carbon dioxide at high pressure and above its critical temperature) is passed over them at approximately 90°C. A supercritical solvent is a highly mobile fluid with a very low viscosity. The carbon dioxide removes the soluble caffeine preferentially without extracting the flavoring agents and evaporates without leaving a harmful residue. [Pg.475]

One of the most widely established processes using SCCO2 is the decaffeination of coffee. Prior to widespread use of this process in the 1980s the preferred extraction solvent was dichloromethane. The potential adverse health effects of chlorinated materials were realized at this time and, although there was no direct evidence of any adverse health effects being caused by any chlorinated residues in decaffeinated coffee there was always the risk, highlighted in some press scare stories. Hence the current processes offer health, environmental and economic advantages. [Pg.138]

Organic Solvents Environmentally Benign Solutions Green coffee beans... [Pg.139]

We can obtain a crude estimate the time required for a precise quantum mechanical calculation to analyse possible syntheses of bryosta-tin. First, the calculation of the energy of a molecule of this size will take hours. Many such calculations will be required to minimise the energy of a structure. A reasonable estimate may be that a thousand energy calculations would be required. Conformation searching will require many such minimisations, perhaps ten thousand. The reactivity of each intermediate will require a harder calculation, perhaps a hundred times harder. Each step will have many possible combinations of reagents, temperatures, times, and so on. This may introduce another factor of a thousand. The number of possible strategies was estimated before as about a million, million, million. In order to reduce the analysis of the synthesis to something which could be done in a coffee break then computers would be required which are 10 times as powerful as those available now. This is before the effects of solvents are introduced into the calculation. [Pg.52]

Decaffeination of Coffee and Tea This application is driven by the environmental acceptability and nontoxicity of CO2 as well as by the ability to tailor the extraction with the adjustable solvent strength. It has been practiced industrially for more than two decades. Caffeine may be extracted from green coffee beans, and the aroma is developed later by roasting. Various methods have been proposed for recovery of the caffeine, including washing with water and adsorption. [Pg.16]

Decaffeination of green coffee beans is most usually carried out with a water/solvent partition system. The green coffee beans are first steamed until they are hot, wet, and swollen, to make the caffeine available. Solvent is then used to extract the caffeine out of the aqueous phase of the beans. Finally, the beans are steamed to drive off residual solvent. The coffee beans lose their wax surface covering in the process, as well as some flavor components. For this reason, the Robusta and Brazilian Arabica coffees that are dry-processed and have the most powerful flavors are usually the types that are decaffeinated. They become milder in the process. Mechanical polishing is used to improve the appearance of decaffeinated green coffee beans if they are not to be roasted immediately. Extra care is required, however, to store these decaffeinated beans since the loss of wax covering as well as caffeine renders them much more susceptible to fungal attack. [Pg.93]

Methylene chloride is probably the most generally used solvent for decaffeination processes, but others, some of which are already found in small amounts in coffee beans, are coming into use. For example, ethyl acetate,8 formaldehyde-dimethylacetal, ethanol, methanol, acetone,9 propane,10 benzyl alcohol,11 carbon dioxide,12 and supercritical carbon dioxide with an acid13 are used. Generally the pressure and temperature of the system are adjusted to keep the solvent in the liquid state. Coffee oil itself is even described for this use in one patent.14... [Pg.93]

A great deal of effort has been put into methods for removing only the caffeine from the extracting solvent, and somehow returning all of the other components to the coffee beans for reabsorption. The principle of the method most generally seen involves exposure of the extract-laden solvent to a caffeine-specific adsorbent. Once the solvent has been treated in this way, it is returned to remove more caffeine. Flowever, the solvent is already saturated with the other solvent-soluble components and does not extract them from the second and subsequent batches of steamed green coffee beans. Adsorbants used for this purpose include activated char-... [Pg.93]

Expelled coffee oil differs from solvent-extracted coffee oil in that it can only be produced from roasted coffee that has been softened by steam treatment. The oil is expelled at temperatures close to 180°F. Expelled coffee oil quickly stales unless the densest fraction is centrifuged away. [Pg.99]

Both solvent-extracted and expelled coffee oils can be sprayed directly onto soluble coffee solids. The oil is adsorbed without degradation, provided moisture and oxygen are absent. However, the most volatile compounds do tend to leave the coffee powder and fill the head space of the container. [Pg.99]

Methods for the decaffeination of green coffee beans, mainly with solvents after a steaming, have already been described. Even with the selective adsorption techniques to remove only caffeine, it is unlikely that the full character of the starting beans can be realized in a final decaffeinated beverage the result is that Robusta coffees are generally used to prepare decaffeinated coffee. The cost is kept down and the treatment, anyway, reduces any harsh or bitter flavor that the Robusta coffee may have had. The resulting beverage will be relatively caffeine-free, but Robusta coffee will contribute more soluble carbohydrates, phenols, and volatile fatty acids, and much less of the diterpenes found in Arabica coffees. [Pg.102]

Peter, S. and Brunner, G., Decaffeinating coffee with solvents at high pressure, Ger. Offen. 2,737,794, 1979. (CA90 150500k)... [Pg.103]

Solvent-assisted decaffeination of coffee can result in residues of solvent reaching the consumer.208 The use of chlorinated hydrocarbon solvents such as chloroform,209 methylene chloride, trichloroethylene,208 and difluoromonochloromethane (Freon),210 will probably be replaced by compounds already found in roasted coffee. The use of an ethyl acetate and 2-butanone mixture leaves a 26-ppm residue in green coffee, but zero residue in roasted coffee.211 Other solvent compounds used or suggested for coffee improvement or decaffeination include propane, butane,212 carbon dioxide,213 214 acetone215 dimethyl succinate,2161,1-dimethoxymethane, and 1,1-dimethoxyethane.217 Of all these, supercritical carbon dioxide, ethyl acetate, and methylene chloride are the solvents most used currently in decaffeination processes. [Pg.157]

Van Rillaer, W., Janssens, G., Beernaert, H., Gas chromatographic determination of residual solvents in decaffeinated coffee, Z. Lebensm. Unters. Forsch., 175, 413,... [Pg.168]

A recent development in liquid-liquid extraction has been the use of supercritical fluids as the extraction-solvent. Carbon dioxide at high pressure is the most commonly used fluid. It is used in processes for the decaffeination of coffee and tea. The solvent can be recovered from the extract solution as a gas, by reducing the pressure. Super critical extraction processes are discussed by Humphrey and Keller (1997). [Pg.624]

This state emphasises its capacity to dissolve chemicals and natural substances of similar way as do different organic solvents such as hexane, acetone or dichloromethane. Therefore, the first applications focused on the extraction of natural substances as an alternative to using organic solvents. Thus, removal of caffeine (coffee or tea) with supercritical C02 is the most mature application at industrial level and is also used in the extraction of hops or cocoa fat. [Pg.100]

Whether filtering material through a cotton-filter or a coffee filter it helps if the thinner parts of the solution are filtered first, followed by the mushy and more bulky components (which may clog the pores of your filters as you strain.) The better your filtration, the more rapid and efficient your emulsions, also resulting in a cleaner product. Cotton must be specifically used. Other fibers have the potential to react with our solvents. A tea strainer (wire strain) can be a simple way to separate bulk ruffage. Another way to improve this method is to use a vacuum filter. There are several varieties, the most affordable being a water vacuum filter that attaches to a household faucet. These cost about 30.00 and are very quick, useful and effective. [Pg.11]

Day 26 Final collection of aqueous solution. Plant material was thrown away. Solution was strained 3 times through coffee filters. 100ml Naphtha added. The jar was shaken 10 minutes. This was allowed to rest for 24 hours. After 24 hours the nasty stuff was skimmed off the top along with the naphtha solvent. This was done twice. Added 100ml of naphtha again, and shook the jar for 5 minutes. [Pg.27]

Another challenge is to develop methods to replace the volatile organic solvents that are used in many industrial procedures. One choice is water as a solvent it is easily repurified, and has a harmless vapor. Another choice is supercritical carbon dioxide, a good solvent for many organic substances. It is not as innocuous as is water, but carbon dioxide can be easily recovered and reused. It is currently used to remove caffeine from coffee, and is being developed as a dry-cleaning solvent to replace organic solvents (Chapter 9). [Pg.143]


See other pages where Solvent coffee is mentioned: [Pg.203]    [Pg.87]    [Pg.90]    [Pg.225]    [Pg.226]    [Pg.534]    [Pg.521]    [Pg.22]    [Pg.389]    [Pg.2003]    [Pg.470]    [Pg.244]    [Pg.52]    [Pg.333]    [Pg.74]    [Pg.100]    [Pg.99]    [Pg.147]    [Pg.158]    [Pg.110]    [Pg.50]   
See also in sourсe #XX -- [ Pg.300 ]




SEARCH



Examples of processes for decaffeinating coffee using organic solvents

© 2024 chempedia.info