Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution stoichiometric

The technique of titration is equally useful for the titration of an unknown base by a solution of strong acid. The calculations proceed exactly as described previously. For the titration of a base, the stoichiometric point is reached when the number of moles of added acid in the titrant equals the number of moles of base in the unknown solution. Stoichiometric point Moles H3 O added = Moles base present... [Pg.247]

Senti and Witnauer206 have reported studies on the fiber diagrams from various alkali-amyloses. Specimens were obtained by deacetylating clamped specimens of amylose acetate with the appropriate alkali. The positions of the alkali ions and the lateral packing of the amylose chains were determined with the aid of Patterson projections. In the A - and B -modifica-tions, the fiber period was 22.6 A. (extension of 6 D-glucose units), whilst in the V -modification it was 8.0 A. These authors have also studied in detail the addition compounds of amylose and inorganic salts with special reference to the structure of the potassium bromide-amylose compound.206 Oriented alkali fibers were treated with the appropriate salt solution. Stoichiometric compounds were formed. The x-ray patterns from these showed that the addition compounds with potassium salts crystallized in... [Pg.379]

Solution Stoichiometric Concentrations Equilibrium Concentrations (2) Ionic... [Pg.238]

The disproportionation is crucial in determining the action of superoxide anion as a base. According to equation 1, in aqueous solution stoichiometric amounts of the strong bases HO and HO are formed, and the equilibrium constant for this process indicates that superoxide is effective in extracting protons from acids of pK up to 24. In contrast O itself is a weak base (the pK of its conjugate acid, HOj, is 4.69). [Pg.152]

Tacoma Waters, Tacoma, WA Free chlorine Sodinm metabisnlfite Sodinm snlfite Sodinm thiosnlfate Calcinm thiosnlfate Ascorbic acid Sodinm ascorbate 1% solution Stoichiometric concentrations and twice the stoichiometric concentrations needed for dechlorination 1.2 8.9 Surface water 300... [Pg.455]

Bureau of Water Works, Portland, OR Combined chlorine Sodinm bisnlfite Sodium sulfite Sodium thiosulfate Calcium thiosulfate Ascorbic acid Sodium ascorbate 1% solution Stoichiometric concentrations needed for dechlorination 1.1 8.0 Surface water 300... [Pg.455]

It should be noted that two ways are used to express the excess caustic soda. In American refineries the excess is expressed in terms of dry sodium hydroxide on a percentage basis, calculated on the weight of oil. In most other refineries the excess is stated as a percentage of the weight or volume of the caustic soda solution stoichiometrically equivalent to the free fatty acid content of the oil. The latter method is used in this chapter. [Pg.195]

Cobalt, nickel, iron, ruthenium, and rhodium carbonyls as well as palladium complexes are catalysts for hydrocarboxylation reactions and therefore reactions of olefins and acetylenes with CO and water, and also other carbonylation reactions. Analogously to hydroformylation reactions, better catalytic properties are shown by metal hydrido carbonyls having strong acidic properties. As in hydroformylation reactions, phosphine-carbonyl complexes of these metals are particularly active. Solvents for such reactions are alcohols, ketones, esters, pyridine, and acidic aqueous solutions. Stoichiometric carbonylation reaction by means of [Ni(CO)4] proceeds at atmospheric pressure at 308-353 K. In the presence of catalytic amounts of nickel carbonyl, this reaction is carried out at 390-490 K and 3 MPa. In the case of carbonylation which utilizes catalytic amounts of cobalt carbonyl, higher temperatures (up to 530 K) and higher pressures (3-90 MPa) are applied. Alkoxylcarbonylation reactions generally proceed under more drastic conditions than corresponding hydrocarboxylation reactions. [Pg.698]

The starting material is usually a monophosphate solution stoichiometrically adjusted by neutralization of phosphoric acid with caustic soda or soda ash. The solution is dehydrated using single-or two-stage processes to produce STTP [1,2]. [Pg.376]

In this work the cesium carbonate solution was added to the heteropolyacid solution stoichiometric conditions were used and the following thermal treatment was applied to the supports under static air 200°C for 2h, then the temperature was increased to 300°C following a ramp of 100°C/h and kept at 300°C for 3h. The oven was then switched off and the temperature decreased during the night. The treated product was recovered the next day. The supports were labeled Si as stated in Table 1. [Pg.812]

Zinc(ll) hydroxide is a white gelatinous solid obtained when the stoichiometric quantity of alkali hydroxide is added to a solution of a zinc salt ... [Pg.419]

Mercuryill) iodide, Hglj, is coloured either red or yellow, and is precipitated (yellow, turning red) by adding the stoichiometric amount of iodide ion to a solution containing mercury(II) ... [Pg.438]

In principle, Chen, given the flux relations there is no difficulty in constructing differencial equations to describe the behavior of a catalyst pellet in steady or unsteady states. In practice, however, this simple procedure is obstructed by the implicit nature of the flux relations, since an explicit solution of usefully compact form is obtainable only for binary mixtures- In steady states this impasse is avoided by using certain, relations between Che flux vectors which are associated with the stoichiometry of Che chemical reaction or reactions taking place in the pellet, and the major part of Chapter 11 is concerned with the derivation, application and limitations of these stoichiometric relations. Fortunately they permit practicable solution procedures to be constructed regardless of the number of substances in the reaction mixture, provided there are only one or two stoichiomeCrically independent chemical reactions. [Pg.5]

T-Jhile the stoichiometric relations have rendered the above problem tractable by permitting an explicit solution of the dusty gas model flux relations, it should be pointed out that they do not lead to equally radical simplifications with all flux models. In the case of the Feng and Stewart models [49- for example, Che total flux of species r is formed by in-... [Pg.119]

Since this is satisfied for all r and t, the stoichiometric relations (11.3) must hold for all solutions. This result is not of general value, since we know from our study of the flux relations that the matrix elements... [Pg.144]

As a corollary to the above it should be pointed out that the exchange is in some instances stoichiometric and therefore the amount of cation in solution can be estimated by passage through a hydrogen exchanger as above and subsequent titration of the acid in the effluent. [Pg.57]

Solutions of dinitrogen pentoxide in nitric acid or sulphuric acid exhibit absorptions in the Raman spectrum at 1050 and 1400 cm with intensities proportional to the stoichiometric concentration of dinitrogen pentoxide, showing that in these media the ionization of dinitrogen pentoxide is complete. Concentrated solutions in water (mole fraction of NgOg > 0-5) show some ionization to nitrate and nitronium ion. Dinitrogen pentoxide is not ionized in solutions in carbon tetrachloride, chloroform or nitromethane. ... [Pg.51]

In aqueous solutions of sulphuric (< 50%) and perchloric acid (< 45 %) nitrous acid is present predominantly in the molecular form, although some dehydration to dinitrogen trioxide does occur.In solutions contairdng more than 60 % and 65 % of perchloric and sulphuric acid respectively, the stoichiometric concentration of nitrous acid is present entirely as the nitrosonium ion (see the discussion of dinitrogen trioxide 4.1). Evidence for the formation of this ion comes from the occurrence of an absorption band in the Raman spectrum almost identical with the relevant absorption observed in crystalline nitrosonium perchlorate. Under conditions in which molecular nitrous... [Pg.54]

The results in fig. 5.1 show that zeroth-order rates of nitration in solutions of acetyl nitrate in acetic anhydride are much greater than the corresponding rates in solutions in inert organic solvents of nitric acid of the same stoichiometric concentration as that of acetyl nitrate. Thus, for corresponding concentrations of nitric acid and acetyl nitrate, nitration in acetic anhydride is e. 5 x 10 and 10 times faster than nitration in sulpholan and nitromethane respectively. This fact, and the fact that the fraction of free nitric acid in solutions of acetyl nitrate in acetic... [Pg.87]

Considering first pure nitric acid as the solvent, if the concentrations of nitronium ion in the absence and presence of a stoichiometric concentration x of dinitrogen tetroxide are yo and y respectively, these will also represent the concentrations of water in the two solutions, and the concentrations of nitrate ion will be y and x- y respectively. The equilibrium law, assuming that the variation of activity coefficients is negligible, then requires that ... [Pg.221]

Note 1. A slight excess of phenol was used. With a stoichiometric amount the solution may be too strongly basic, so that the further isomerization will become too fast. [Pg.90]

The carbonylation of COD PdCl2 complex in aqueous sodium acetate produces /rui7x-2-hydroxy-5-cyclooctenecarboxylic acid /i-lactone (240). The lactone is obtained in 79% yield directly by the carbonylation of the COD complex in aqueous sodium acetate solution[220]. /i-Propiolactone (241) is obtained in 72% yield by the reaction of the PdCC complex of ethylene with CO and water in MeCN at —20 " C. /3-Propiolactone synthesis can be carried out with a catalytic amount of PdCC and a stoichiometric amount of CuCl2[221]. [Pg.53]

Direct Titrations. The most convenient and simplest manner is the measured addition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. Eor example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution. [Pg.1167]

Normality makes use of the chemical equivalent, which is the amount of one chemical species reacting stoichiometrically with another chemical species. Note that this definition makes an equivalent, and thus normality, a function of the chemical reaction in which the species participates. Although a solution of 1T2S04 has a fixed molarity, its normality depends on how it reacts. [Pg.16]

Consider, for example, the general equilibrium reaction shown in equation 6.1, involving the solutes A, B, C, and D, with stoichiometric coefficients a, b, c, and d. [Pg.137]

For a titration to be accurate we must add a stoichiometrically equivalent amount of titrant to a solution containing the analyte. We call this stoichiometric mixture the equivalence point. Unlike precipitation gravimetry, where the precipitant is added in excess, determining the exact volume of titrant needed to reach the equivalence point is essential. The product of the equivalence point volume, Veq> and the titrant s concentration, Cq, gives the moles of titrant reacting with the analyte. [Pg.274]

The diacid-diamine amidation described in reaction 2 in Table 5.4 has been widely studied in the melt, in solution, and in the solid state. When equal amounts of two functional groups are present, both the rate laws and the molecular weight distributions are given by the treatment of the preceding sections. The stoichiometric balance between reactive groups is readily obtained by precipitating the 1 1 ammonium salt from ethanol ... [Pg.306]

The product of this reaction can be removed as an azeotrope (84.1% amide, 15.9% acetic acid) which boils at 170.8—170.9°C. Acid present in the azeotrope can be removed by the addition of soHd caustic soda [1310-73-2] followed by distillation (2). The reaction can also take place in a solution having a DMAC-acetic acid ratio higher than the azeotropic composition, so that an azeotrope does not form. For this purpose, dimethylamine is added in excess of the stoichiometric proportion (3). If a substantial excess of dimethylamine reacts with acetic acid under conditions of elevated temperature and pressure, a reduced amount of azeotrope is formed. Optimum temperatures are between 250—325°C, and pressures in excess of 6200 kPa (900 psi) are requited (4). DMAC can also be made by the reaction of acetic anhydride [108-24-7] and dimethylamine ... [Pg.84]

Recovery of Ammonia. The filter Hquor contains unreacted sodium chloride and substantially all the ammonia with which the brine was originally saturated. The ammonia may be fixed or free. Fixed ammonia (ammonium chloride [12125-02-97]) corresponds stoichiometrically to the precipitated sodium bicarbonate. Free ammonia includes salts such as ammonium hydroxide, bicarbonate, and carbonate, and the several possible carbon—ammonia compounds that decompose at moderate temperatures. A sulfide solution may be added to the filter Hquor for corrosion protection. The sulfide is distilled for eventual absorption by the brine in the absorber. As the filter Hquor enters the distiller, it is preheated by indirect contact with departing gases. The warmed Hquor enters the main coke, tile, or bubble cap-fiUed sections of the distiller where heat decomposes the free ammonium compounds and steam strips the ammonia and carbon dioxide from the solution. [Pg.523]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]


See other pages where Solution stoichiometric is mentioned: [Pg.123]    [Pg.301]    [Pg.36]    [Pg.346]    [Pg.146]    [Pg.68]    [Pg.1127]    [Pg.98]    [Pg.506]    [Pg.123]    [Pg.301]    [Pg.36]    [Pg.346]    [Pg.146]    [Pg.68]    [Pg.1127]    [Pg.98]    [Pg.506]    [Pg.397]    [Pg.111]    [Pg.142]    [Pg.143]    [Pg.155]    [Pg.225]    [Pg.235]    [Pg.1166]    [Pg.655]    [Pg.286]    [Pg.144]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Buffer solutions stoichiometric concentrations

Solute stoichiometric molality

Solution chemistry stoichiometric

Stoichiometric calculations buffered solutions

Stoichiometric calculations for solutions

Stoichiometric calculations standard solution

© 2024 chempedia.info