Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution polymeric surfactants

In order to determine whether these surfactant vesicles were of polymerized vesicle forms, a 25% V/V ethanol (standard grade) was added to the three year old sample solution. Alcohols are known (34) to destroy surfactant vesicles derived from natural phospholipids, however, synthetically prepared polymerized vesicles are stable in as much as 25% (V/V) alcohol addition. Photomicrographs shown in Figures 7c and 7d indicate that these vesicles partially retain their stability (being mesomorphic) and therefore are suspected to be polymerized surfactants. Whether surfactant molecules of these vesicles are single or multipla bonds in tail, or in head groups remains to be seen. [Pg.401]

Exploiting ATRP as an enabling technology, we have recently synthesised a wide range of new, controlled-structure copolymers. These include (1) branched analogues of Pluronic non-ionic surfactants (2) schizophrenic polymeric surfactants which can form two types of micelles in aqueous solution (3) novel sulfate-based copolymers for use as crystal habit modifiers (4) zwitterionic diblock copolymers, which may prove to be interesting pigment dispersants. Each of these systems is discussed in turn below. [Pg.24]

The need for increased stabilities and for controllable permeabilities and morphologies led to the development of polymerized surfactant vesicles [55, 158-161]. Vesicle-forming surfactants haw been functionalized by vinyl, methacrylate, diacetylene, isocyano, and styrene groups in their hydrocarbon chains or headgroups. Accordingly, SUVs could be polymerized in their bilayers or across their headgroups. In the latter case, either the outer or both the outer and inner surfaces could be polymerized separately (Fig. 38). Photopolymerization links both surfaces selective polymerization of the external SUV surface is accomplished by the addition of a water-soluble initiator (potassium persulfate, for example) to the vesicle solution. [Pg.55]

Emulsion polymerization is applicable only to monomers that are relatively insoluble in water, such as styrene. A coarse emulsion of monomer in aqueous surfactant is prepared with a water-soluble initiator, say, H202 in the solution. The surfactant concentration is above the CMC, so surfactant molecules are present as monomers, micelles, and emulsifiers at the oil-water interface. Even an insoluble liquid like styrene dissolves in water to some extent. Therefore the monomer is present in coarse emulsion drops, solubilized in micelles, and as dissolved molecules in water. A schematic illustration of the distribution of surfactant, monomer, and polymer in an emulsion polymerization process is shown in Figure 8.14. [Pg.394]

It is found in this study that an adjustment of pH value of solution by acid (HF or HC1) to 10.5 is very important for the effective formation of uniform mesopores. However, the acid should be added into the mixture solution after the addition of surfactant otherwise, the formation of the ordered mesoporous structure would be affected. The explanation is that when acid is added to a mixture solution without surfactant, the pH value of system will reduce and subsequently influence the interaction between cationic surfactant and anionic silicate species in the mixture, leading to the poor polymerization of inorganic silicate species. In addition, when HF is used prior to the addition of surfactant, the formation of stable NajSiFg can deactivate the polymerization of silicate species, further terminating the growth of mesoporous framework. [Pg.51]

Gadelle et al. (1995) investigated the solubilization of various aromatic solutes irbfftRSS-b-PEO (ABA)/PPO-bPEO-bPPO (BAB) triblock copolymers. According to the experimental results, they indicated two different solubilization processes. To understand better the mechanism for solubilization in the polymeric surfactant solutions, it was postulated that (1) the addition of apolar solutes promotes micellization of the polymeric surfactant molecules, (2) the central core of the polymeric micelles contains some water molecules, and (3) solubilization is initially a replacement process in which water molecules are displaced from the micellar core bythesolubilizate. Adetailed discussion of the solubilization process can be found in the next section and the pharmaceutical application section of this chapter. [Pg.312]

The conversion of dextran with 1,2-epoxy-3-phenoxypropane, epoxyoctane or epoxydodecane may be exploited for the preparation of amphiphilic dextran derivatives. Polymeric surfactants prepared by hydrophobic modification of polysaccharides have been widely studied, starting with the pioneering work of Landoll [261]. Neutral water-soluble polymeric surfactants can be obtained by reaction of dextran with 1,2-epoxy-3-phenoxypropane in 1 M aqueous NaOH at ambient temperature (Fig. 35, [229,233]). The number n of hydrophobic groups per 100 Glcp units varies between 7 and 22 depending on the reaction conditions. 2-Hydroxy-3-phenoxy propyl dextran ethers (DexP) behave like classical associative polymers in aqueous solution. In dilute solution, the intrinsic viscosity decreases significantly whereas... [Pg.246]

The surfactant properties of polymeric silicone surfactants are markedly different from those of hydrocarbon polymeric surfactants such as the ethylene oxide/propylene oxide (EO/PO) block copolymers. Comparable silicone surfactants often give lower surface tension and silicone surfactants often self-assemble in aqueous solution to form bilayer phases and vesicles rather than micelles and gel phases. The skin feel and lubricity properties of silicone surfactants do not appear to have any parallel amongst hydrocarbon polymeric surfactants. [Pg.186]

Different approaches have been used to optimize the dispersion of CNTs in the polymeric medium. Composites can be prepared by different techniques including in-situ polymerization, solution mixing, surfactant-assisted processing and melt compounding. [Pg.347]

Diblock copolymers consisting of soluble and insoluble parts (Fig. 2b) act much as grafted chains once they are adsorbed on the surface. However, the thermodynamics of the initial solution, consisting primarily of micelles, and the conformation of the insoluble blocks on the surface affect the coverage in ways not well understood (e.g., Munch and Gast, 1988 Marques et al., 1988 Gast, 1989). Many dispersants or polymeric surfactants are synthesized in this way (Reiss et al, 1987). [Pg.138]

Chemical modification of hydroxyethylcellulose or hydroxypropylcellulose with long-chain hydrocarbon alkylating reagents, such as C8-C24 epoxides or halides, has been reported to yield novel water-soluble compositions exhibiting enhanced low-shear-rate solution viscosities and polymeric surfactant properties [ 104,105]. Patents have also been issued for water-soluble phosphonomethylcellulose and phosphonomethylhydroxyethylcellulose [106,107]. [Pg.110]

Rabagliati et al. (14) studied the polymerization of styrene in a three phase system containing an anionic-nonionic surfactant mixture and brine. Both AIBN and potassium persulfate initiators were used. The system was reported to be microemulsion continuous and even multicontinuous. (14). No autoacceleration was observed and the authors concluded that the polymerization exhibits an inverse dependence of the degree of polymerization on initiator concentration, similar to bulk solution polymerization. [Pg.66]

Polymer-surfactant aggregates formed "In-sltu" In solution can dissociate or change their structure depending upon the solution conditions. Such changes can be avoided by either polymerizing appropriately chosen structures of surfactants or by using preformed entitles which combine the two features In the same molecule. We refer here to polymeric surfactants. The concept of polymeric surfactants Is not new. To some extent proteins themselves embody this principle. Strauss and co-workers studied "polysoaps" derived from... [Pg.297]

In another interesting development, Yei et al. [124] prepared POSS-polystyrene/clay nanocomposites using an emulsion polymerization technique. The emulsion polymerization for both the virgin polystyrene and the nano composite started with stirring a suspension of clay in deionized water for 4h at room temperature. A solution of surfactant ammonium salt of cetylpyridinium chloride or POSS was added and the mixture was stirred for another 4 h. Potassium hydroxide and sodium dodecyl sulphate were added into the solution and the temperature was then raised to 50 °C. Styrene monomer and potassium persulfate were later on added slowly to the flask. Polymerization was performed at 50 °C for 8 h. After cooling, 2.5% aqueous aluminium sulphate was added to the polymerized emulsion, followed by dilute hydrochloric acid, with stirring. Finally, acetone was added to break down the emulsion completely. The polymer was washed several times with methanol and distilled water and then dried overnight in a vacuum oven at 80 °C. The obtained nanocomposite was reported to be exfoliated at up to a 3 wt % content of pristine clay relative to the amount of polystyrene. [Pg.248]

In addition to giving information about the shape and internal structure of colloidal aggregates, SANS studies can also be used profitably to determine the thickness and conformation of polymer layers adsorbed onto the surface of colloidal particles such as latex nanoparticles, and in some special cases, the surface of emulsion droplets. ° In such studies, the particles on which the polymer is adsorbed must generally be very accurately contrast matched to the solvent so as to allow information to be obtained only about the adsorbed layer. SANS studies have also been recently used in combination with differential scanning calorimetry and visual inspection of the solutions, to draw up a (simplified) partial phase diagram of the aggregation behavior of a polymeric surfactant in water.t ... [Pg.1052]


See other pages where Solution polymeric surfactants is mentioned: [Pg.2590]    [Pg.587]    [Pg.51]    [Pg.149]    [Pg.54]    [Pg.354]    [Pg.201]    [Pg.14]    [Pg.13]    [Pg.11]    [Pg.273]    [Pg.322]    [Pg.335]    [Pg.335]    [Pg.353]    [Pg.407]    [Pg.82]    [Pg.71]    [Pg.290]    [Pg.103]    [Pg.1334]    [Pg.22]    [Pg.26]    [Pg.219]    [Pg.123]    [Pg.233]    [Pg.65]    [Pg.181]    [Pg.225]    [Pg.1057]    [Pg.1057]    [Pg.1057]    [Pg.1185]    [Pg.45]    [Pg.9]    [Pg.1036]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 , Pg.48 , Pg.49 ]




SEARCH



Polymeric solutions

Polymeric surfactant

Polymerization solution polymerizations

Polymerization surfactant

Solution polymerization

Surfactant solutions

© 2024 chempedia.info