Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solute uptake

If initial solute uptake rate is determined from intestinal tissue incubated in drug solution, uptake must be normalized for intestinal tissue weight. Alternative capacity normalizations are required for vesicular or cellular uptake of solute (see Section VII). Cellular transport parameters can be defined either in terms of kinetic rate-time constants or in terms of concentration normalized flux [Eq. (5)]. Relationships between kinetic and transport descriptions can be made on the basis of information on solute transport distances. Note that division of Eq. (11) or (12) by transport distance defines a transport resistance of reciprocal permeability (conductance). [Pg.183]

Solute uptake can also be evaluated in isolated cell suspensions, cell mono-layers, and enterocyte membrane vesicles. In these preparations, uptake is normalized by enzyme activity and/or protein concentration. While the isolation of cells in suspension preparations is an experimentally easy procedure, disruption of cell monolayers causes dedifferentiation and mucosal-to-serosal polarity is lost. While cell monolayers from culture have become a popular drug absorption screening tool, differences in drug metabolism and carrier-mediated absorption [70], export, and paracellular transport may be cell-type- and condition-depen-dent. [Pg.194]

Mucosal brush border membrane vesicles and basolateral membrane vesicles can be isolated to study solute uptake across specific enterocyte boundaries. These more isolated vesicle systems allow for investigation of solute transport across a particular membrane barrier and permit separation of membrane trans-... [Pg.194]

WH Karasov, JM Diamond. A simple method for measuring intestinal solute uptake in vitro. J Comp Physiol 152 105-116, 1983. [Pg.199]

The larger the solute molecular size, the higher the water loss and the lower the sugar uptake under fixed process conditions. Using the right size of osmotic solute, satisfactory moisture diffusivities, with nearly zero net solute uptake, can be obtained. [Pg.178]

The nature of the plant material subjected to osmotic dehydration is the key point for both modeling and optimizing the osmosis in itself and as a pretreatment to further processing. The same osmotic medium, applied to different raw materials, under identical process conditions causes substantially different rates of dehydration and solute uptake. Data on these findings were reviewed previously (Lazarides et al., 1999 Torreggiani, 1995) and have been confirmed by recent research. [Pg.179]

During the process, the solute diffuses into the intercellular space and, depending on the characteristics of the solute, it may pass through the membrane and enter the intracellular space. Differences in chemical potentials of water and solutes in the system result in fluxes of several components of the material and solution water drain and solute uptake are the two main simultaneous flows. Together with the changes in chemical composition of the food material, structural changes such as shrinkage, porosity reduction, and cell collapse take place and influence mass transfer behavior in the tissue. [Pg.186]

Absorption strictly the transfer of solute from the environment to the blood, but is often used to generally describe solute uptake from the environment into an animal. [Pg.350]

The digestion of solid samples to produce a solution is discussed in Section 13.2. For solution-based ICP MS analysis, the liquid is taken up through a thin tube via a peristaltic pump. This feeds directly into the instrument nebulizer, where argon gas is introduced into the liquid and a fine mist of droplets is expelled from the tip of the nebulizer. This sample aerosol is sprayed into the condenser to reduce the size of the droplets, ensuring an even sample loading and preventing cooling of the plasma. About 1% of the sample solution uptake is transported to the plasma torch, and any unused solution is drained away and may be recycled. [Pg.196]

The First-Order Kinetic Model. Karickhoff (1, 68) has proposed a two-compartment equilibrium-kinetic model for describing the solute uptake or release by a sediment. This model is based on the assumption that two types of sorption sites exist labile sites, S, which are in equilibrium with bulk aqueous solution, and hindered sites, Sjj, which are controlled by a slow first-order rate process. Conceptually, sorption according to this model can be considered either as a two-stage process ... [Pg.208]

Lu et al. (1992) performed a comparison of water and solute uptake in the in situ single-pass perfusion model and the isolated loops conscious rat model. Water flux in both experimental set-ups was found to be comparable. It was found that the solute (i.e. acetaminophen and phenytoin) membrane permeabilities (Pm) were consistently higher in the chronically isolated loops compared to the in situ perfusion. It was suggested that this was as a result of greater luminal fluid mixing in the in vivo system. A key advantage of the in vivo approach was that each animal can act as its own control for drug absorption studies. [Pg.56]

As the concentration of MeOH increases, the divergent diffusion behavior between the two membrane types is a reflection of fhe difference in MeOH solubility and its concentration dependence within each membrane. This was verified by solvenf upfake measurements. Upon increasing MeOH concentration, Nafion 117 showed a steady increase in mass, while a sharp drop in total solution uptake was observed for BPSH 40. The lower viscosity of MeOH also affecfs fhe fluidity of the solution within the pores. The constant solvent uptake and the increased fluidity of the more concentrated MeOH solutions accounted for fhe slight increase in diffusion coefficienf of Nafion 117. For BPSH 40, increasing the MeOH concentration resulted in a decrease in MeOH diffusion. The solvent uptake measurements showed very similar behavior, indicating that the membrane excludes the solvent upon exposure to higher MeOH concentrations. [Pg.126]

The solution to be nebulized is usually pumped to the nebulizer using a peristaltic pump, unlike for FAAS, where the solution uptake is by free aspiration. The solution is pumped through polymeric tubing [usually poly(vinyl chloride)] and also connecting tubing (usually Teflon) to the nebulizer. Both of these materials can be manufactured to a high degree of purity, hence contamination is minimized. The solution is pumped at a rate of 1 -2 ml min, which is much slower than the 5-10 ml min uptake rate for FAAS. This tends to favour the formation of fewer but smaller droplets, which results in less noise but a lower overall sample transport efficiency. [Pg.89]

Most of the mathematical theories and approaches have been developed originally for sorption rather than ion exchange. However, they are sufficiently general to be applicable with minor, if any, modifications to a number of similar phenomena such as ion exclusion and ligand exchange. According to Helfferich (1995), the applicability of a simplified theory depends more on the mode of operation than on the particular mechanism of solute uptake. [Pg.43]

Characteristics such as the solution uptake rate, the sensitivity and the limit of detection for uranium determination using several nebulizers (Meinhard, MicroMist nebulizer, Q-DIHEN,... [Pg.145]

Nebulizer Solution uptake rate [ml min-1] Sensitivity [counts fg-1] Limit of detection [pg l 1]... [Pg.146]

Nebulizer Solution uptake rate, mlmin 1 Sample volume, ml Absolute sensitivity, counts fg-1 Reference... [Pg.426]

For a given ICP-OES instrument, the intensity of an analyte line is a complex function of several factors. Some adjustable parameters that affect the ICP source are the radiofrequency power coupled into the plasma (usually about 1 kW), the gas flow rates, the observation height in the lateral-viewing mode and the solution uptake rate of the nebuliser. Many of these factors interact in a complex fashion and their combined effects are different for dissimilar spectral lines. The selection of an appropriate combination of these factors is of critical importance in ICP-OES. This issue will be addressed in Chapter 2, where experimental designs and optimisation procedures will be discussed. Many examples related to ICP and other atomic spectrometric techniques will be presented. [Pg.15]

JV-Nitraminopyridines are reducible both in acid and alkali. In hydrochloric acid the main product from 2-nitraminopyridine was the hydrazino-pyridine, formed in a six-electron reduction, but 2-aminopyridine and 2-chloropyridine were side products, the latter possibly through reaction by an intermediate diazonium compound with chloride. Contrary to nitramines of most primary amines, 2-nitraminopyridine431 is reducible in alkaline solution uptake of the first two electrons forms the 2-pyridyl-N-nitrosamine, which is further reduced to 2-aminopyridine. [Pg.338]


See other pages where Solute uptake is mentioned: [Pg.251]    [Pg.41]    [Pg.237]    [Pg.260]    [Pg.152]    [Pg.177]    [Pg.177]    [Pg.180]    [Pg.181]    [Pg.183]    [Pg.190]    [Pg.193]    [Pg.281]    [Pg.319]    [Pg.342]    [Pg.492]    [Pg.16]    [Pg.264]    [Pg.676]    [Pg.30]    [Pg.32]    [Pg.141]    [Pg.142]    [Pg.143]    [Pg.208]    [Pg.325]    [Pg.421]    [Pg.425]    [Pg.426]    [Pg.428]    [Pg.276]   
See also in sourсe #XX -- [ Pg.171 , Pg.172 , Pg.173 ]




SEARCH



© 2024 chempedia.info