Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubilization residue

Enzyme—Heat—Enzyme Process. The enzyme—heat—enzyme (EHE) process was the first industrial enzymatic Hquefaction procedure developed and utilizes a B. subtilis, also referred to as B. amjloliquefaciens, a-amylase for hydrolysis. The enzyme can be used at temperatures up to about 90°C before a significant loss in activity occurs. After an initial hydrolysis step a high temperature heat treatment step is needed to solubilize residual starch present as a fatty acid/amylose complex. The heat treatment inactivates the a-amylase, thus a second addition of enzyme is required to complete the reaction. [Pg.290]

To prepare DQAsomes or vesicles composed of dequalinium derivatives, the appropriate amount of bola-lipid (10 mM final) was dissolved in methanol, dried using a rotary evaporator, suspended in 2.5 mL 5mM N-2-hydroxyethylpiperazine-N -2-ethane sulfonic acid (HEPES), pH 7.4, bath sonicated for about one hour followed by probe sonication for 45 minutes (10 W). The sample was then centrifuged for 30 minutes at 3000 rpm, the clear, or in some cases, opaque supernatant collected and the remaining non-solubilized residue lyophilized. The concentration of solubilized bola-lipid can be determined spectrophotometrically or can be inferred from the amount of recovered compound after lyophilization. [Pg.328]

In the search for an improvement of solution stability, i.e., in minimizing the ester hydrolysis and decreasing the acyl migration, Anderson et al synthesized a series of more stable water-soluble methylprednisolone esters. Several of the analogs were shown to have shelf lives in solution of greater than 2 years at room temperature. Ester hydrolysis studies of these compounds in human and monkey serum indicated that derivatives having anionic solubilizing residues such as carboxylate... [Pg.771]

Alcohol amines contain the -OH (hydroxyl) group in addition to the amine group as depicted by the formulas in Fig. 41. These compounds are bases that rapidly form salts with acids, and have good solubility in both aqueous and organic systems. Therefore, they serve to help solubilize and emulsify flux components and reaction products [102]. An important feature of alcohol amines is their ability to help solubilize residues and form complexes. [Pg.399]

One ion-exchange process, which was used for several years by Quebec Lithium Corp., is based on the reaction of P-spodumene with an aqueous sodium carbonate solution in an autoclave at 190—250°C (21). A slurry of lithium carbonate and ore residue results, and is cooled and treated with carbon dioxide to solubilize the lithium carbonate as the bicarbonate. The ore residue is separated by filtration. The filtrate is heated to drive off carbon dioxide resulting in the precipitation of the normal carbonate. [Pg.222]

In a modification the conversion process, the jarosite residue is hydrothermaHy decomposed to hematite by autoclaving at 220—250°C. This solubilizes zinc and other metal values and the hematite has a potential for iron recovery. Hematite stockpiles are less of a problem than jarosite because hematite is denser and holds up less of the soluble metals. [Pg.402]

The conformation of bovine myelin basic protein (MBP) in AOT/isooctane/water reversed micellar systems was studied by Waks et al. 67). This MBP is an extrinsic water soluble protein which attains an extended conformation in aqueous solution 68 but is more density packed at the membrane surface. The solubilization of MBP in the AOT reversed micelles depends on the water/AOT-ratio w0 68). The maximum of solubilization was observed at a w0-value as low as 5.56. The same value was obtained for another major protein component of myelin, the Folch-Pi proteolipid 69). According to fluorescence emission spectra of MBP, accessibility of the single tryptophane residue seems to be decreased in AOT reversed micelles. From CD-spectra one can conclude that there is a higher conformational rigidity in reversed micelles and a more ordered aqueous environment. [Pg.10]

The use of solubilizing treatments employing chelants (EDTA, NTA, etc.) is permissible provided that a maximum of 10 mg/kg (ppm) is not exceeded at any time. Complete removal of oxygen should have been achieved prior to injection of the chelant. In boilers having heat fluxes greater than 300 kW/m2 (52,832 Btu/h/ft2/°F) the use of chelants should be avoided because they can decompose to form acidic residues. [Pg.585]

Dissolution. Plutonium is solubilized in nitric acid solutions at Rocky Flats. The feed material consists of oxide, metal and glass, dissolution heels, incinerator ash and sand, slag, and crucible from reduction operations. The residues are contacted with 12M HNO3 containing CaF2 or HF to hasten dissolution. Following dissolution, aluminum nitrate is added to these solutions to complex the excess fluoride ion. [Pg.371]

Among the agricultural chemicals used for the cultivation of tobacco crops we find several amines, amides and carbamates. These include dimethyldodecylamine acetate (Penar), maleic hydra-zide-diethanolamine (MH-30), and carbaryl (Sevin) as a representative of the methyl urethanes (Figure 3 , 14), It is known that small quantities of these agents are found as residues in harvested tobacco (15). To date, only diethanolamine (DELA), the water-solubilizer for maleic hydrazide in MH-30, has been studied as a possible precursor for nitrosamines in tobacco and in tobacco smoke. In 1976, more than 1,400 metric tons of maleic hydrazide had been used on U.S. tobacco (16), most of which had been applied as the MH-30 formulation with diethanolamine (14,16). [Pg.252]

Carboxyl redution. A sample of pennethylated PI (5 mg) was carboxyl-reduced by a modification of the method described by Lindberg and Lbnngren [9], as follows. The methylated fraction was solubilized and added a mixture of LiAlH4 (25 mg) in THF (5 mL) at 20 °C for 4 h. and refluxed during 1 h. The excess of reagent was destroyed with ethyl acetate (5-6 drops) and water (10 drops) and the pH of the mixture adjusted to neutrality with acetic acid. The insoluble residue was removed by centrifugation. The reduced fi action was precipitated with EtOH. The reaction was monitored by l.r. specroscopy. Hydrolysis products were analysed by GC-MS as methyl alditol acetates... [Pg.553]

Solubilization of an active H,K-ATPase is also a prerequisite for reconstitution of the enzyme into liposomes. With these H,K-ATPase proteoliposomes it is then possible to study the transport characteristics of pure H,K-ATPase, without the interference of residual protein contamination that is usually present in native vesicular H,K-ATPase preparations. Rabon et al. [118] first reported the reconstitution of choleate or n-octylglucoside solubilized H,K-ATPase into phosphatidylcholine-cholesterol liposomes. The enzyme was reconstituted asymmetrically into the proteoliposomes with 70% of the pump molecules having the cytoplasmic side extravesicular. In the presence of intravesicular K, the proteoliposomes exhibited an Mg-ATP-dependent H transport, as monitored by acridine orange fluorescence quenching. Moreover, as seen with native H,K-ATPase vesicles, reconstituted H,K-... [Pg.45]

Chemical modifications like alkylation with (A-ethylmaleimide (NEM) or oxidation with diamide that inhibit the phosphorylation activity of the enzyme did not seem to have any significant effect on the high affinity binding site when the enzyme was solubilized in the detergent decyl-PEG [69,41]. However, in the intact membrane these treatments reduced the affinity by a factor of 2-3. The reduction of the affinity was exclusively due to modification of the cysteine residue at position 384 in the B domain [69]. Apparently, the detergent effects the interaction between the B and C domains. [Pg.149]


See other pages where Solubilization residue is mentioned: [Pg.129]    [Pg.1154]    [Pg.621]    [Pg.63]    [Pg.129]    [Pg.1154]    [Pg.621]    [Pg.63]    [Pg.413]    [Pg.276]    [Pg.64]    [Pg.260]    [Pg.385]    [Pg.67]    [Pg.155]    [Pg.38]    [Pg.138]    [Pg.2059]    [Pg.238]    [Pg.100]    [Pg.72]    [Pg.72]    [Pg.206]    [Pg.269]    [Pg.16]    [Pg.17]    [Pg.55]    [Pg.5]    [Pg.50]    [Pg.52]    [Pg.79]    [Pg.79]    [Pg.87]    [Pg.112]    [Pg.250]    [Pg.400]    [Pg.507]    [Pg.981]    [Pg.4]    [Pg.729]    [Pg.191]   
See also in sourсe #XX -- [ Pg.179 , Pg.180 , Pg.181 ]




SEARCH



© 2024 chempedia.info