Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility salt formation

The terrains under the buildings could be a source/repository of solutions that ascend by capillary action (a process frequently referred as rising damp) and promote soluble salt formation by precipitation from themselves or by being enriched trough reaction with building materials. [Pg.137]

Various-borate ester formation, polymer cross-linker, alkaline pH buffer, corrosion inhibition, sparingly soluble salt formation, biostatic effect, oxidizing property... [Pg.439]

The electrode potential of aluminium would lead us to expect attack by water. The inertness to water is due to the formation of an unreactive layer of oxide on the metal surface. In the presence of mercury, aluminium readily forms an amalgam (destroying the original surface) which is. therefore, rapidly attacked by water. Since mercury can be readily displaced from its soluble salts by aluminium, contact with such salts must be avoided if rapid corrosion and weakening of aluminium structures is to be prevented. [Pg.144]

Oxonium salt formation. Shake up 0 5 ml. of ether with 1 ml. of cone. HCl and note that a clear solution is obtained owing to the formation of a water-soluble oxonium salt. Note that aromatic and aliphatic hydrocarbons do not behave in this way. In general diaryl ethers and alkyl aryl ethers are also insoluble in cone. HCl. [Pg.396]

Salt Formation. Salt-forming reactions of adipic acid are those typical of carboxylic acids. Alkali metal salts and ammonium salts are water soluble alkaline earth metal salts have limited solubiUty (see Table 5). Salt formation with amines and diamines is discussed in the next section. [Pg.240]

Salt formation with Brmnsted and Lewis acids and exhaustive alkylation to form quaternary ammonium cations are part of the rich derivati2ation chemistry of these amines. Carbamates and thiocarbamates are formed with CO2 and CS2, respectively the former precipitate from neat amine as carbamate salts but are highly water soluble. [Pg.208]

Sulfur mustard reacts rapidly with chlorine or with bleach, and this reaction is a suitable means of decontamination. Nitrogen mustards, however, chlorinate extremely slowly thus chlorination is not suitable for their decontamination. The formation of water-soluble salts, such as by neutralization with sodium bisulfate, is the usual method for nitrogen mustard removal from contaminated surfaces. The mustard salts are much less vesicant than the corresponding free bases. [Pg.398]

Salt Formation. Citric acid forms mono-, di-, and tribasic salts with many cations such as alkahes, ammonia, and amines. Salts may be prepared by direct neutralization of a solution of citric acid in water using the appropriate base, or by double decomposition using a citrate salt and a soluble metal salt. [Pg.180]

D C Red No. 36 (27) is an unsulfonated pigment. It contains no groups capable of salt formation and is thus insoluble direcdy on coupling. Its chlorine group ortho to the azo group results in a stericaHy hindered molecule with low solubiUty and excellent light stabiUty. The unsulfonated dyes Citms Red No. 2 (8) and D C Red No. 17 (20) are insoluble in water but soluble in aromatic solvents. [Pg.443]

The oxidation products are almost insoluble and lead to the formation of protective films. They promote aeration cells if these products do not cover the metal surface uniformly. Ions of soluble salts play an important role in these cells. In the schematic diagram in Fig. 4-1 it is assumed that from the start the two corrosion partial reactions are taking place at two entirely separate locations. This process must quickly come to a complete standstill if soluble salts are absent, because otherwise the ions produced according to Eqs. (2-21) and (2-17) would form a local space charge. Corrosion in salt-free water is only possible if the two partial reactions are not spatially separated, but occur at the same place with equivalent current densities. The reaction products then react according to Eq. (4-2) and in the subsequent reactions (4-3a) and (4-3b) to form protective films. Similar behavior occurs in salt-free sandy soils. [Pg.140]

A WBL can also be formed within the silicone phase but near the surface and caused by insufficiently crosslinked adhesive. This may result from an interference of the cure chemistry by species on the surface of substrate. An example where incompatibility between the substrate and the cure system can exist is the moisture cure condensation system. Acetic acid is released during the cure, and for substrates like concrete, the acid may form water-soluble salts at the interface. These salts create a weak boundary layer that will induce failure on exposure to rain. The CDT of polyolefins illustrates the direct effect of surface pretreatment and subsequent formation of a WBL by degradation of the polymer surface [72,73]. [Pg.698]

The degree of concentration that can be achieved by RO may be limited by the precipitation of soluble salts and the resultant scaling of membranes. The most troublesome precipitate is calcium sulfate. The addition of polyphosphates to the influent will inhibit calcium sulfate scale formation, however, and precipitation of many of the other salts, such as calcium carbonate, can be prevented by pretreating the feed either with acid or zeolite softeners, depending on the membrane material. [Pg.362]

To accelerate the polymerization process, some water-soluble salts of heavy metals (Fe, Co, Ni, Pb) are added to the reaction system (0.01-1% with respect to the monomer mass). These additions facilitate the reaction heat removal and allow the reaction to be carried out at lower temperatures. To reduce the coagulate formation and deposits of polymers on the reactor walls, the additions of water-soluble salts (borates, phosphates, and silicates of alkali metals) are introduced into the reaction mixture. The residual monomer content in the emulsion can be decreased by hydrogenizing the double bond in the presence of catalysts (Raney Ni, and salts of Ru, Co, Fe, Pd, Pt, Ir, Ro, and Co on alumina). The same purpose can be achieved by adding amidase to the emulsion. [Pg.68]

The great importance of the solubility product concept lies in its bearing upon precipitation from solution, which is, of course, one of the important operations of quantitative analysis. The solubility product is the ultimate value which is attained by the ionic concentration product when equilibrium has been established between the solid phase of a difficultly soluble salt and the solution. If the experimental conditions are such that the ionic concentration product is different from the solubility product, then the system will attempt to adjust itself in such a manner that the ionic and solubility products are equal in value. Thus if, for a given electrolyte, the product of the concentrations of the ions in solution is arbitrarily made to exceed the solubility product, as for example by the addition of a salt with a common ion, the adjustment of the system to equilibrium results in precipitation of the solid salt, provided supersaturation conditions are excluded. If the ionic concentration product is less than the solubility product or can arbitrarily be made so, as (for example) by complex salt formation or by the formation of weak electrolytes, then a further quantity of solute can pass into solution until the solubility product is attained, or, if this is not possible, until all the solute has dissolved. [Pg.26]

Transformation of bromocriptine free base 2 into water soluble salt -mesylate, is the only way to obtain a suitable therapeutical form. Crystallization of mesylate using alcohol as a solvent in the presence of excess of strong acid, e.g. methanesulphonic acid can induce formation of 12 -0-alkyl-derivative 2. Until now this derivatisation of ergot molecule has been practically unknown. In continuation we developed the preparative method for obtaining these compounds, (using tetrafluoroboric acid as a catalyst) (ref. 20). [Pg.82]

Chlorhexidine base is not readily soluble in water therefore the freely soluble salts, acetate, gluconate and hydrochloride, are used in formulation. Chlorhexidine exhibits the greatest antibacterial activity at pH 7-8 where it exists exclusively as a di-cation. The cationic nature of the compound results in activity being reduced by anionic compounds including soap and many anions due to the formation of insoluble salts. Anions to be wary of include bicarbonate, borate, carbonate, chloride, citrate and phosphate with due attention being paid to the presence of hard water. Deionized or distilled water should preferably be used for dilution purposes. Reduction in activity will also occur in the presence of blood, pus and other organic matter. [Pg.217]

Ellis Wilson (1991, 1992) examined cement formation between a large number of metal oxides and PVPA solutions. They concluded that setting behaviour was to be explained mainly in terms of basicity and reactivity, noting that cements were formed by reactive basic or amphoteric oxides and not by inert or acidic ones (Table 8.3). Using infrared spectroscopy they found that, with one exception, cement formation was associated with salt formation the phosphonic add band at 990 cm diminished as the phosphonate band at 1060 cm" developed. The anomalous result was that the acidic boric oxide formed a cement which, however, was soluble in water. This was the result, not of an add-base readion, but of complex formation. Infrared spectroscopy showed a shift in the P=0 band from 1160 cm" to 1130 cm", indicative of an interaction of the type... [Pg.311]

Effective solubility is still defined by Eq. (11a). However, Eq. (11a) is solved under three limiting conditions with reference to a special pH value, (i) If the solution pH is below the conditions which lead to salt formation, the solubihty-pH curve has the shape described by Eq. (12a) (dashed curve in Eig. 3.2a). (ii) If pH is above... [Pg.70]

In principle, all the curves in Figs. 6.1a, 6.2a, and 6.3a would be expected to have solubility limits imposed by the salt formation. Under conditions of a constant counterion concentration, the effect would be indicated as a point of discontinuity (pA flbbs), followed by a horizontal line of constant solubility. S, -. [Pg.99]

Anderson, B. D. Flora, K. P., Preparation of water-soluble compounds through salt formation, in Wermuth, C. G. (ed.), The Practice of Medicinal Chemistry, Academic Press, London, 1996, pp. 739-754. [Pg.278]

Reduced absorption due to complex formation or other interactions between drugs and intestinal components leading to poor absorption has been described in a few cases. One example is the precipitation of cationic drugs as very poorly-soluble salts with bile acids, which has been reported for several compounds [62], Another well-known example is the complex formation between tetracycline together with calcium due to chelation after administration of the drug together... [Pg.513]

Our efforts to concretely determine the relative stereochemistry of this dimer have been met by failure. We have made attempts to resolve several of the monomeric tetracyclic aminoaldehydes of type 100 by HPLC using chiral stationary phase, in order to know for sure the structure of the homodimer. The poor solubility of these compounds in typical HPLC solvents hampered these efforts to access enantiopure monomer. A few attempts at diastereomeric salt formation from compounds of type 101 using chiral carboxylic acids were also unsuccessful. Computational analysis corroborates the assumption that the homodimer should be formed preferentially. [Pg.85]


See other pages where Solubility salt formation is mentioned: [Pg.66]    [Pg.2497]    [Pg.66]    [Pg.2497]    [Pg.435]    [Pg.1050]    [Pg.177]    [Pg.30]    [Pg.147]    [Pg.14]    [Pg.418]    [Pg.491]    [Pg.24]    [Pg.881]    [Pg.36]    [Pg.948]    [Pg.1231]    [Pg.688]    [Pg.618]    [Pg.157]    [Pg.269]    [Pg.14]    [Pg.435]    [Pg.1050]    [Pg.7]    [Pg.340]    [Pg.471]    [Pg.97]    [Pg.633]    [Pg.21]    [Pg.148]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Formate salts

Salt solubility

Salts formation

Salts, soluble

Water-soluble compounds preparation through salt formation

© 2024 chempedia.info