Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility factors pressure effect

Remember that the most important contribution to the oil formation volume factor is the amount of gas evolved from the liquid. The solubility of hydrocarbon gas in water is considerably less than the amount of gas held by oil so that gas solubility has little effect on the water formation-volume factor. The contraction and expansion due to reduction in temperature and pressure are small and offsetting so the formation volume factor of water is numerically small, rarely larger than 1.06 res bbl/STB. [Pg.445]

This is largely due to the fact that retention data depend on certain factors the effects of which are difficult to eliminate completely or control and which are normally neglected. These factors are the imperfections in the gas phase and the compressibility of the stationary phase (cf., the quantities vh v , zq and 0 in eqn. 1), the finite rate of equilibration of the solute, variations in the composition of the sorbent, spurious sorption of the solute, solubility of the carrier gas in the stationary phase, etc. Hence, even relative retention volumes and/or retention indices must depend to some extent on the kind, flow-rate and absolute pressure of the carrier gas, the load of the liquid stationary phase on the support, which production batch of the stationary phase has been used and the kind of support. The absolute column pressure will obviously vary with the column length and particle size of the support. Moreover, adjusted retention data are required in all instances, which renders it necessary to measure the dead retention time. This is a crucial step in obtaining accurate retention data and presents a problem per se. [Pg.39]

The final factor that affects solubility is pressure. Changes in pressure have hardly any effect on solid and liquid solutions. Such changes do affect the solubility of a gas in a liquid solvent, however. The solubility of the gas is directly proportional to the pressure of the gas above the liquid. For example, the solubility of oxygen in lake water depends on the air pressure above the lake. [Pg.299]

Table I shows that, as the boiling point of the hydrocarbon used as the entrainer increases so does that of the azeotrope with water and the percent of water therein. A high percentage of water in the azeotrope is desired for the heat required for the distillation, which is mainly that of the latent heat of the water plus that of the entrainer. Sufficient entrainer should be available in the azeotrope for reflux to the column although this requirement is not large. Also, the solubility or dilution effect is better with lower-boiling hydrocarbons. Thus there are several factors to be balanced in choosing the azeotrope. The effect of relative boiling points, vapor pressures, and amounts of different entrainers in their azeotropes with water has been discussed as affecting the choice of entrainers for separating water from acetic acid (5). However, that represents a much more difficult selection because there the quantity of reflux is important and also the solvent characteristics of the entrainer for the acetic acid also control the choice. Table I shows that, as the boiling point of the hydrocarbon used as the entrainer increases so does that of the azeotrope with water and the percent of water therein. A high percentage of water in the azeotrope is desired for the heat required for the distillation, which is mainly that of the latent heat of the water plus that of the entrainer. Sufficient entrainer should be available in the azeotrope for reflux to the column although this requirement is not large. Also, the solubility or dilution effect is better with lower-boiling hydrocarbons. Thus there are several factors to be balanced in choosing the azeotrope. The effect of relative boiling points, vapor pressures, and amounts of different entrainers in their azeotropes with water has been discussed as affecting the choice of entrainers for separating water from acetic acid (5). However, that represents a much more difficult selection because there the quantity of reflux is important and also the solvent characteristics of the entrainer for the acetic acid also control the choice.
For a supercritical fluid to be suitable as a solvent in extraction, a high solubility of the solute is required, tf the objective is to separate components, the solvent should also have selective dissolution properties. Moreover, the pressure effect on the solubility is a factor. High compression costs may be incurred if the conditions for desirable solubility require excessively elevated pressures. The critical temperature of a potential solvent is also important. If the solvent is to be around its critical point for optimal performance, it is preferred that its critical temperature not be too far from ambient temperature. [Pg.376]

The first parenthesized factor of the equation is the ideal y it is what y, would be if the gas mixture were an ideal gas, the pure saturated vapor of i were also an ideal gas, and the Poynting pressure effect were negligible. The actual y in a compressed gas is often many times greater than the ideal value, since the factor ( ), becomes much smaller than 1. Hence the actual solubility increases up to its real value by a factor of 1000 or more. [Pg.373]

Immiscible liquid phases are formed because of chemical effects, namely, the mutual solubilities of the two pheses. The design for liquid-liquid separations is affected therefore by changes in temperature, pressure, presence of contaminants such as surfactants, and stream mixing effects. In this section, however, we will not consider any solubility factors, only the effect of physical forces. [Pg.147]

The first term A is for ideal gas solubility, the second term B accounts for the non-ideality, while the third term C (Poynting correction) accounts for the pressure effects. The product of the second and third terms is often referred as the Enhancement Factor (over the ideal). In the absence of data, the sublimation pressure may be approximated through extrapolation of the vapor pressure information. [Pg.1429]

Factors Affecting Solubility Structure Effects Pressure Effects... [Pg.510]

Plasticization Gas solubility in the membrane is one of the factors governing its permeation, but the other factor, diffusivity, is not always independent of solubility. If the solubility of a gas in a polymer is too high, plasticization and swelhng result, and the critical structure that controls diffusion selectivity is disrupted. These effects are particularly troublesome with condensable gases, and are most often noticed when the partial pressure of CO9 or H9S is high. H9 and He do not show this effect This problem is well known, but its manifestation is not always immediate. [Pg.2048]

Assuming the randomness factor is about the same, the gas with the larger heat effect (favoring dissolving) should have the higher solubility. The measured solubilities at one atmosphere pressure and 20°C of oxygen and nitrous oxide in water are, respectively, 02, 1.4 X 10-3 mole/liter and N20, 27 X 10-3 mole/liter, consistent with our prediction.. [Pg.167]

Fluxes are linear functions of reservoir contents. Reservoir size and the residence time of the carbon in the reservoir are the parameters used in the functions. Between the ocean and the atmosphere and within the ocean, fluxes rates are calculated theoretically using size of the reservoir, surface area of contact between reservoirs, concentration of CO2, partial pressures of CO2, temperature, and solubility as factors. The flux of carbon into the vegetation reservoir is a function of the size of the carbon pool and a fertilization effect of increased CO2 concentration in the atmosphere. Flux from vegetation into the atmosphere is a function of respiration rates estimated by Whittaker and Likens (79) and the decomposition of short-lived organic matter which was assumed to be half of the gross assimilation or equal to the amount transferred to dead organic matter. Carbon in organic matter that decomposes slowly is transferred... [Pg.417]

A cosolvent used as a miscible additive to CO2 changed the properties of the supercritical gas phase. The addition of a cosolvent resulted in increased viscosity and density of the gas mixture and enhanced extraction of the oil compounds into the C02-rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high-pressure densitometer. Cosolvent miscibility with CO2, brine solubility, cosolvent volatility, and relative quantity of the cosolvent partitioning into the oil phase are factors that must be considered for the successful application of cosolvents. The results indicate that lower-molecular-weight additives, such as propane, are the most effective cosolvents to increase oil recovery [1472]. [Pg.213]

In contrast, when boron trifluoride etherate is substituted for the free boron trifluoride, only a trace of the hydrocarbon is formed, even after weeks of reaction.143 The unique effectiveness of boron trifluoride gas in promoting these reductions is believed to be due to several factors, including the ability of the coordinatively unsaturated boron center to rapidly and tightly coordinate with oxygen centers and to the thermodynamically favorable creation of a Si-F bond.1 A slight pressure of boron trifluoride gas must be maintained over the surface of the solution throughout the reaction because boron trifluoride has only limited solubility in the weakly coordinating dichloromethane solvent. [Pg.14]

As was discussed earlier in Section 1.2.8 a complication arises in that two of these properties (solubility and vapor pressure) are dependent on whether the solute is in the liquid or solid state. Solid solutes have lower solubilities and vapor pressures than they would have if they had been liquids. The ratio of the (actual) solid to the (hypothetical supercooled) liquid solubility or vapor pressure is termed the fugacity ratio F and can be estimated from the melting point and the entropy of fusion. This correction eliminates the effect of melting point, which depends on the stability of the solid crystalline phase, which in turn is a function of molecular symmetry and other factors. For solid solutes, the correct property to plot is the calculated or extrapolated supercooled liquid solubility. This is calculated in this handbook using where possible a measured entropy of fusion, or in the absence of such data the Walden s Rule relationship suggested by Yalkowsky (1979) which implies an entropy of fusion of 56 J/mol-K or 13.5 cal/mol-K (e.u.)... [Pg.15]


See other pages where Solubility factors pressure effect is mentioned: [Pg.81]    [Pg.992]    [Pg.181]    [Pg.8]    [Pg.1973]    [Pg.53]    [Pg.117]    [Pg.102]    [Pg.1972]    [Pg.4363]    [Pg.2703]    [Pg.518]    [Pg.319]    [Pg.210]    [Pg.361]    [Pg.1144]    [Pg.76]    [Pg.545]    [Pg.829]    [Pg.237]    [Pg.746]    [Pg.242]    [Pg.86]    [Pg.31]    [Pg.295]    [Pg.270]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Solubility effect

Solubility effective

Solubility pressure

Solubility, factors

© 2024 chempedia.info