Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fugacity ratio

Figure 13 Plot of log of fugacity ratio or solubility ratio for methylprednisolone polymorphs as a function of solvent and reciprocal absolute temperature. (Reprinted with permission from Ref. 47.)... Figure 13 Plot of log of fugacity ratio or solubility ratio for methylprednisolone polymorphs as a function of solvent and reciprocal absolute temperature. (Reprinted with permission from Ref. 47.)...
An attractive feature of K<)A is that it can replace the liquid or supercooled liquid vapor pressure in a correlation. K,-ja is an experimentally measurable or accessible quantity, whereas the supercooled liquid vapor pressure must be estimated from the solid vapor pressure, the melting point and the entropy of fusion. The use of KOA thus avoids the potentially erroneous estimation of the fugacity ratio, i.e., the ratio of solid and liquid vapor pressures. This is especially important for solutes with high melting points and, thus, low fugacity ratios. [Pg.4]

Saturation properties such as solubility in water and vapor pressure can be measured directly for solids and liquids. For certain purposes it is useful to estimate the solubility that a solid substance would have if it were liquid at a temperature below the melting point. For example, naphthalene melts at 80°C and at 25°C the solid has a solubility in water of 33 g/m3 and a vapor pressure of 10.9 Pa. If naphthalene was a liquid at 25°C it is estimated that its solubility would be 115 g/m3 and its vapor pressure 38.1 Pa, both a factor of 3.5 greater. This ratio of solid to liquid solubilities or vapor pressures is referred to as the fugacity ratio. It is 1.0 at the melting point and falls, in this case at lower temperatures to 0.286 at 25°C. [Pg.9]

Measurements of gas chromatographic retention time are often used as a fast and easy method of estimating vapor pressure. These estimated pressures are related to the gas/substrate partition coefficient, which can be regarded as a ratio of solubility of the substance in the gas to that in the substrate, both solubilities being of the substance in the liquid state. As a result the estimated vapor pressures are of the liquid state. To obtain the solid vapor pressure requires multiplication by the fugacity ratio. It is important to establish if the estimated and reported property is of the vapor or liquid. [Pg.9]

QSPRs in which solubilities and vapor pressures are correlated against molecular structure are done exclusively using the liquid state property. This avoids the complication introduced by the effect of fugacity ratio or melting point on the solid state property. [Pg.9]

The fugacity ratio F can be estimated at temperature T (K) from the expression... [Pg.9]

As was discussed earlier in Section 1.2.8 a complication arises in that two of these properties (solubility and vapor pressure) are dependent on whether the solute is in the liquid or solid state. Solid solutes have lower solubilities and vapor pressures than they would have if they had been liquids. The ratio of the (actual) solid to the (hypothetical supercooled) liquid solubility or vapor pressure is termed the fugacity ratio F and can be estimated from the melting point and the entropy of fusion. This correction eliminates the effect of melting point, which depends on the stability of the solid crystalline phase, which in turn is a function of molecular symmetry and other factors. For solid solutes, the correct property to plot is the calculated or extrapolated supercooled liquid solubility. This is calculated in this handbook using where possible a measured entropy of fusion, or in the absence of such data the Walden s Rule relationship suggested by Yalkowsky (1979) which implies an entropy of fusion of 56 J/mol-K or 13.5 cal/mol-K (e.u.)... [Pg.15]

Heats of fusion, AHfus, are generally expressed in kcal/mol or kJ/mol and entropies of fusion, ASlus in cal/mol-K (e.u. or entropy unit) or J/mol K. The fugacity ratio F, as discussed in Section 1.2.8, is used to calculate the supercooled liquid vapor pressure or solubility for correlation purposes. In the case of liquids such as benzene, it is 1.0. For solids it is a fraction representing the ratio of solid-to-liquid solubility or vapor pressure. [Pg.29]


See other pages where Fugacity ratio is mentioned: [Pg.9]    [Pg.15]    [Pg.41]    [Pg.43]    [Pg.64]    [Pg.67]    [Pg.70]    [Pg.73]    [Pg.77]    [Pg.79]    [Pg.83]    [Pg.85]    [Pg.93]    [Pg.98]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.109]    [Pg.112]    [Pg.114]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.150]    [Pg.152]    [Pg.159]    [Pg.164]    [Pg.167]    [Pg.172]    [Pg.175]    [Pg.179]    [Pg.183]    [Pg.187]    [Pg.190]    [Pg.194]    [Pg.201]    [Pg.206]    [Pg.211]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Fugacity

© 2024 chempedia.info