Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid samples plasma emission spectroscopy

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

For inductively coupled plasma atomic emission spectroscopy (ICP-AES) the sample is normally in solution but may be a fine particulate solid or even a gas. If it is a solution, this is nebulized, resulting in a fine spray or aerosol, in flowing argon gas. The aerosol is introduced into a plasma torch, illustrated in Figure 3.21. [Pg.66]

In Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), a gaseous, solid (as fine particles), or liquid (as an aerosol) sample is directed into the center of a gaseous plasma. The sample is vaporized, atomized, and partially ionized in the plasma. Atoms and ions are excited and emit light at characteristic wavelengths in the ultraviolet or visible region of the spectrum. The emission line intensities are proportional to the concentration of each element in the sample. A grating spectrometer is used for either simultaneous or sequential multielement analysis. The concentration of each element is determined from measured intensities via calibration with standards. [Pg.48]

Different analytical techniques are used for detection of the elemental composition of the solid samples. The simplest is direct detection of emission from the plasma of the ablated material formed above a sample surface. This technique is generally referred to as LIBS or LIPS (laser induced breakdown/plasma spectroscopy). Strong continuous background radiation from the hot plasma plume does not enable detection of atomic and ionic lines of specific elements during the first few hundred nanoseconds of plasma evolution. One can achieve a reasonable signal-to-noise ra-... [Pg.233]

Tin is readily measured in multielement analyses of air, water, and solid waste samples by inductively coupled plasma atomic emission spectroscopy. For individual analyses of tin, direct aspiration atomic absorption spectroscopy is usually used. Organotin can be extracted from environmental samples and determined by atomic spectrometric methods or gas chromatography, usually after derivatization. [Pg.143]

Many metal analyses are carried out using atomic spectroscopic methods such as flame or graphite furnace atomic absorption or inductively coupled plasma atomic emission spectroscopy (ICP-AES). These methods commonly require the sample to be presented as a dilute aqueous solution, usually in acid. ICP-mass spectrometry requires similar preparation. Other samples may be analyzed in solid form. For x-ray fluorescence, the solid sample may require dilution with a solid buffer material to produce less variation between samples and standards, reducing matrix effects. A solid sample is also preferred for neutron activation analyses and may be obtained from dilute aqueous samples by precipitation methods. [Pg.229]

Broekaert J. A. C. and Leis F. (1985) An application of electrothermal evaporation using direct solids sampling coupled with microwave induced plasma optical emission spectroscopy to elemental determinations in biological matrices, Mikrochim Acta II 261-272. [Pg.321]

The separation of yttrium from the lanthanides is performed by selective oxidation, reduction, fractionated crystallization, or precipitation, ion-exchange and liquid-liquid extraction. Methods for determination include arc spectrography, flame photometry and atomic absorption spectrometry with the nitrous oxide acetylene flame. The latter method improved the detection limits of yttrium in the air, rocks and other components of the natural environment (Deuber and Heim 1991 Welz and Sperling 1999).Other analytical methods useful for sensitive monitoring of trace amounts of yttrium are X-ray emission spectroscopy, mass spectrometry and neutron activation analysis (NAA) the latter method utilizes the large thermal neutron cross-section of yttrium. For high-sensitivity analysis of yttrium, inductively coupled plasma atomic emission spectroscopy (ICP-AES) is especially recommended for solid samples, and inductively coupled plasma mass spectroscopy (ICP-MS) for liquid samples (Reiman and Caritat 1998). [Pg.1194]

ICP emission spectroscopy is used primarily for the qualitative and quantitative analysis of samples that arc dissolved or suspended in aqueous or organic liquids. I he techniques for preparation of such solutions are similar lo tho.se described in. Section 9D-1 for flame absorption methods. With plasma emission, however, it is possible to analyze solid samples direclly. These procedures include incorporating electrothermal vaporization, la.ser and S[)ark ablation, and glow-discharge vaporization, all of which were described in Section 8C-2. Suspensions of solids in solutions can... [Pg.266]

In addition to the spark emission methods, quantitative analysis directly on solids can be accomplished using x-ray fluorescence, or, after sample dissolution, accurate analyses can be made using plasma emission or atomic absorption spectroscopy (37). [Pg.105]

The following ionization sources are used mainly in inorganic (atomic) MS, where the elemental composition of the sample is desired. The glow discharge (GD) and spark sources are used for solid samples, while the inductively coupled plasma (ICP) is used for solutions. All three sources are also used as atomic emission spectroscopy sources they are described in more detail with diagrams in Chapter 7. [Pg.632]

Inductively coupled plasma (ICP) ionization has currently assumed a more prominent role in the field of elemental and isotopic analysis [1,2,14]. It is apphcable to solid-state as well as to solution-phase samples. A plasma is defined as a form of matter that contains a significant concentration of ions and electrons. The heart of this technique is a plasma torch, first developed as an efficient source for optical emission spectroscopy (OES) [15,16]. Multielement analysis with OES has, however, some serious shortcomings, such as complicated spectra, spectral interferences, high background levels, and inadequate detection of some rare-earth and heavy elements. The high ionization efficiency (>90%) of ICP for most elements is an attractive feature for its coupling to mass spectrometry. [Pg.268]


See other pages where Solid samples plasma emission spectroscopy is mentioned: [Pg.1418]    [Pg.1387]    [Pg.1415]    [Pg.177]    [Pg.38]    [Pg.12]    [Pg.97]    [Pg.304]    [Pg.113]    [Pg.46]    [Pg.127]    [Pg.229]    [Pg.59]    [Pg.262]    [Pg.46]    [Pg.377]    [Pg.97]    [Pg.109]    [Pg.72]    [Pg.138]    [Pg.712]    [Pg.1555]    [Pg.1561]    [Pg.1562]    [Pg.1575]    [Pg.1599]    [Pg.295]    [Pg.449]    [Pg.478]    [Pg.244]    [Pg.2454]    [Pg.507]    [Pg.2945]    [Pg.829]   


SEARCH



Emission sampling

Emission solid

Emission spectroscopy)

Plasma emission spectroscopy

Plasma spectroscopy

Sample solid samples

Sampling solids

Solid spectroscopy

© 2024 chempedia.info