Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfate sodium, formation

The reaction of formate salts with mineral acids such as sulfuric acid is the oldest iadustrial process for the production of formic acid, and it stiU has importance ia the 1990s. Sodium formate [141-53-7] and calcium formate [544-17-2] are available iadustriaHy from the production of pentaerythritol and other polyhydric alcohols and of disodium dithionite (23). The acidolysis is technically straightforward, but the unavoidable production of sodium sulfate is a clear disadvantage of this route. [Pg.504]

After sulfuric acid work-up (accompanied by the formation of sodium sulfate), the resorcinol is extracted and isolated in a 94% yield based on y -benzenedisulfonic acid [98-48-6]. In addition to the technical complexity that goes along with the manipulation of soHds at high temperature, this process produces large amounts of salts (sulfite and sulfate salts) which economically as well as environmentally are not always desired. [Pg.487]

The ammonium sulfate and sodium chloride are simultaneously dissolved, preferably ia a heel of ammonium chloride solution. The sodium chloride is typically ia excess of about 5%. The pasty mixture is kept hot and agitated vigorously. When the mixture is separated by vacuum filtration, the filter and all connections are heated to avoid cmst formation. The crystalline sodium sulfate is washed to remove essentially all of the ammonium chloride and the washings recycled to the process. The ammonium chloride filtrate is transferred to acid resistant crystallising pans, concentrated, and cooled to effect crystallisation. The crystalline NH Cl is washed with water to remove sulfate and dried to yield a product of high purity. No attempt is made to recover ammonium chloride remaining ia solution. The mother Hquor remaining after crystallisation is reused as a heel. [Pg.364]

Minerals of sodium sulfate occur naturally throughout the world. The deposits result from evaporation of inland seas and terminal lakes. Colder climates, such as those found ia Canada and the former Soviet Union, favor formation of mirabilite. Warmer climates, such as those found ia South America, India, Mexico, and the western United States, favor formation of thenardite. In areas where other anions and cations are present, double salts can be found of the kiads shown ia Table 2, which Hsts nearly all naturally occurring minerals containing sodium sulfate. Except for mirabilite, thenardite, and astrakanite, these mineral deposits play a minor role ia sodium sulfate production. [Pg.203]

Occurrence. In the United States natural sodium sulfate brines are found at Seades Lake, at the shallow castUe formation undedying Terry and Gains counties in Texas, and at the Great Salt Lake. [Pg.413]

On digestion of this solid mass with 1 1. of ice and water, the sodium salt of the enol dissolves in the water, and the unreacted ester is removed by extracting the aqueous layer with two 200-ml. portions of ether (Note 5). The foimyl derivative settles out as an oil upon acidification of the aqueous layer with dilute sulfuric acid. The oil is extracted with three 200-ml. portions of ether, and the ethereal extract is washed several times with water and dried over anhydrous sodium sulfate. The ether is distilled, and, to remove traces of ethyl formate, the oil is heated on a steam bath under a pressure of 20-30 mm. for 1 hour. The remaining yellow formyl derivative weighs 27-29 g. (Note 6). [Pg.29]

Backfill containing a large proportion of bentonite has a tendency to change its volume with variations in water content of the surrounding soil. This can lead to formation of hollow cavities in the backfill with a considerable decrease in the current delivery. A standard backfill consists of a mixture of 75% gypsum, 20% bentonite and 5% sodium sulfate. The specific resistivity of this backfill is initially 0.5 to 0.6 m and can rise with increased leaching to 1.5 m. [Pg.198]

Methylsulfinyl carbanion (dimsyl ion) is prepared from 0.10 mole of sodium hydride in 50 ml of dimethyl sulfoxide under a nitrogen atmosphere as described in Chapter 10, Section III. The solution is diluted by the addition of 50 ml of dry THF and a small amount (1-10 mg) of triphenylmethane is added to act as an indicator. (The red color produced by triphenylmethyl carbanion is discharged when the dimsylsodium is consumed.) Acetylene (purified as described in Chapter 14, Section I) is introduced into the system with stirring through a gas inlet tube until the formation of sodium acetylide is complete, as indicated by disappearance of the red color. The gas inlet tube is replaced by a dropping funnel and a solution of 0.10 mole of the substrate in 20 ml of dry THF is added with stirring at room temperature over a period of about 1 hour. In the case of ethynylation of carbonyl compounds (given below), the solution is then cautiously treated with 6 g (0.11 mole) of ammonium chloride. The reaction mixture is then diluted with 500 ml of water, and the aqueous solution is extracted three times with 150-ml portions of ether. The ether solution is dried (sodium sulfate), the ether is removed (rotary evaporator), and the residue is fractionally distilled under reduced pressure to yield the ethynyl alcohol. [Pg.124]

Commercial methyl formate was dried over sodium sulfate and used without special purification. [Pg.48]

The three-necked flask is charged with 750 ml. of formamide, 25 ml. of water, and 50 g. of ammonium chloride (Note 2). The mixture is heated to 180-190° in an oil bath, and 400 g. (3.02 moles) of 4,4-dimethoxy-2-butanone (Note 3) is added dropwise with stirring over the course of 6 hours (Note 4). The flow of cooling water in the reflux condenser should be adjusted to a rate such that the methanol and methyl formate formed during the reaction distil out (Note 5). After all the acetal has been added, heating is continued for 1 hour (Note 6). The mixture is allowed to cool and is poured into 1 1. of IN sodium hydroxide. The resultant solution is extracted with chloroform in a liquid-liquid extractor for 24 hours. The chloroform is separated, dried over sodium sulfate, and removed by distillation through a short column on a steam bath. [Pg.78]

Commercial ethylene chlorohydrin is dried over anhydrous sodium sulfate and distilled before use b.p. 126-127°(743 mm.). Excess is used to avoid the formation of dibenzhydryl ether as a by-product. [Pg.7]

If propynol and similar acetylenic compounds are dried with alkali before distillation, the residue may explode (probably owing to acetylenic salt formation). Sodium sulfate is recommended as a suitable desiccant. [Pg.415]

Technical ethyl formate was purified by washing with 3 per cent sodium carbonate solution, then with cold water, drying over anhydrous sodium sulfate, filtering, and fractionating. It is very important that all the materials used in the synthesis of acetol be anhydrous, as otherwise condensation products are formed. [Pg.2]

There are several ways to represent reactions in water. Suppose, for example, that we were writing an equation to describe the mixing of a lead(II) nitrate solution with a sodium sulfate solution and showing the resulting formation of... [Pg.58]

Sodium methoxide, 3-methyl-4-nitroanisole, diethyl oxalate, 30% hydrogen peroxide, 97% sodium hydride, methyl acetoacetate, sodium sulfate, 10% palladium on activated carbon, ammonium formate, and 2-nitrophenylacetic acid were purchased from Aldrich Chemical Company, Inc., and were used without further purification. [Pg.217]

By varying the amount of sodium sulfate and the reaction time, the size of these rods was controlled. Only centrifugation was necessary to collect the nanorods, indicating that rod-rod repulsion was minimal. Though the authors don t offer a detailed explanation for the mechanism of the reaction, they h) othesize that the sulfate ions may adsorb onto side surfaces or modify the ionic strength to allow the formation of nanorods. This will be discussed in the following section. [Pg.123]

Sullivan reaction org chem The formation of a red-brown color when cysteine is reacted with l,2-naphthoquinone-4-sodium sulfate in a highly alkaline reducing medium. sal-a-van re,ak-shan ) eulpho-See sulfo-. sal-fo )... [Pg.364]

In most commercial processes, borax is obtained from lake brines, tincal and colemanite. The primary salt constituents of brine are sodium chloride, sodium sulfate, sodium carbonate and potassium chloride. The percent composition of borax as Na2B40 in brine is generally in the range 1.5 to 1.6%. Borax is separated from these salts by various physical and chemical processes. The brine solution (mixed with mother liquor) is subject to evaporation and crystahzation for the continuous removal of NaCl, Na2C03 and Na2S04, respectively. The hot liquor consists of concentrated solution of potassium salts and borate components of the brine. The insoluble solid particles are filtered out and the liquor is cooled rapidly in continuous vacuum crystallizers under controlled conditions of temperatures and concentrations to crystallize KCl. Cystallization of borax along with KCl from the concentrated liquor must not occur at this stage. KCl is separated from the hquor by filtration. Bicarbonate then is added to the liquor to prevent any formation of sodium... [Pg.117]


See other pages where Sulfate sodium, formation is mentioned: [Pg.46]    [Pg.348]    [Pg.216]    [Pg.499]    [Pg.414]    [Pg.43]    [Pg.196]    [Pg.244]    [Pg.411]    [Pg.95]    [Pg.807]    [Pg.1183]    [Pg.93]    [Pg.31]    [Pg.650]    [Pg.662]    [Pg.166]    [Pg.105]    [Pg.90]    [Pg.154]    [Pg.154]    [Pg.171]    [Pg.157]    [Pg.45]    [Pg.31]    [Pg.150]    [Pg.131]    [Pg.11]    [Pg.71]    [Pg.544]    [Pg.243]   
See also in sourсe #XX -- [ Pg.328 ]




SEARCH



Sodium formate

Sodium sulfate

Sulfate formation

© 2024 chempedia.info