Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium oxidation state

Originally, general methods of separation were based on small differences in the solubilities of their salts, for examples the nitrates, and a laborious series of fractional crystallisations had to be carried out to obtain the pure salts. In a few cases, individual lanthanides could be separated because they yielded oxidation states other than three. Thus the commonest lanthanide, cerium, exhibits oxidation states of h-3 and -t-4 hence oxidation of a mixture of lanthanide salts in alkaline solution with chlorine yields the soluble chlorates(I) of all the -1-3 lanthanides (which are not oxidised) but gives a precipitate of cerium(IV) hydroxide, Ce(OH)4, since this is too weak a base to form a chlorate(I). In some cases also, preferential reduction to the metal by sodium amalgam could be used to separate out individual lanthanides. [Pg.441]

The preparation of mercuric chloride is identical to the chamber method for mercurous chloride, except that an excess of chlorine is used to ensure complete reaction to the higher oxidation state. Very pure product results from this method. Excess chlorine is absorbed by sodium hydroxide in a tower. [Pg.113]

Soda. Ash Roasting. Some of the first processes to recover selenium on a commercial basis were based on roasting of copper slimes with soda ash to convert both selenium and tellurium to the +6 oxidation state. Eigure 1 shows flow sheets for two such processes. Slimes are intensively mixed with sodium carbonate, a binder such as bentonite, and water to form a stiff paste. The paste is extmded or peUetized and allowed to dry. Care in the preparation of the extmdates or pellets is required to ensure that they have sufficient porosity to allow adequate access to the air required for oxidation. [Pg.327]

Most metal carbonyls are synthesized in nonaqueous media. Reactive metals, such as sodium (85), magnesium (105), zinc (106), and aluminum (107,108), are usually used as reducing agents. Solvents that stabilize low oxidation states of metals and act as electron-transfer agents are commonly employed. These include diethyl ether, tetrahydrofiiran, and 2-methoxyethyl ether (diglyme). [Pg.68]

The primary routes of entry for animal exposure to chromium compounds are inhalation, ingestion, and, for hexavalent compounds, skin penetration. This last route is more important in industrial exposures. Most hexavalent chromium compounds are readily absorbed, are more soluble than trivalent chromium in the pH range 5 to 7, and react with cell membranes. Although hexavalent compounds are more toxic than those of Cr(III), an overexposure to compounds of either oxidation state may lead to inflammation and irritation of the eyes, skin, and the mucous membranes associated with the respiratory and gastrointestinal tracts. Skin ulcers and perforations of nasal septa have been observed in some industrial workers after prolonged exposure to certain hexavalent chromium compounds (108—110), ie, to chromic acid mist or sodium and potassium dichromate. [Pg.141]

Inorganic ar senic normally occurs in two oxidation states As(V) and As(III). Arsenic (V) gives a significantly lower response than ar senic (III). For pre-reduction As(V) to the As(III) concentrated hydrochloric acid and potassium iodide/ascorbic acid reagents were used. As organoarsenic compounds do not react with sodium tetrahydi oborate, they were decomposed with a mixture of HNO and on a hot plate. [Pg.208]

Sodium amalgam reductions of M2(CO)iq give Na+[M(CO)5] and, indeed, further reduction leads to the super reduced species [M(CO)4] in which the metals exhibit their lowest known formal oxidation state of —3. On the other hand, treatment of [M(CO)5Cl] with AICI3 and CO under pressure produces [M(CO)6]" AlCl4 from which other salts of the cation can be obtained. [Pg.1064]

Because they possess an odd number of valence electrons the elements of this group can only satisfy the 18-electron rule in their carbonyls if M-M bonds are present. In accord with this, mononuclear carbonyls are not formed. Instead [M2(CO)s], [M4(CO)i2] and [M6(CO)i6] are the principal binary carbonyls of these elements. But reduction of [Co2(CO)g] with, for instance, sodium amalgam in benzene yields the monomeric and tetrahedral, 18-electron ion, [Co(CO)4] , acidification of which gives the pale yellow hydride, [HCo(CO)4]. Reductions employing Na metal in liquid NH3 yield the super-reduced [M(CO)3] (M = Co, Rh, Ir) containing these elements in their lowest formal oxidation state. [Pg.1140]

Duncan and Frankenthal report on the effect of pH on the corrosion rate of gold in sulphate solutions in terms of the polarization curves. It was found that the rate of anodic dissolution is independent of pH in such solutions and that the rate controlling mechanism for anodic film formation and oxygen evolution are the same. For the open circuit behaviour of ferric oxide films on a gold substrate in sodium chloride solutions containing low iron concentration it is found that the film oxide is readily transformed to a lower oxidation state with a Fe /Fe ratio corresponding to that of magnetite . [Pg.943]

Traces of many metals interfere in the determination of calcium and magnesium using solochrome black indicator, e.g. Co, Ni, Cu, Zn, Hg, and Mn. Their interference can be overcome by the addition of a little hydroxylammonium chloride (which reduces some of the metals to their lower oxidation states), or also of sodium cyanide or potassium cyanide which form very stable cyanide complexes ( masking ). Iron may be rendered harmless by the addition of a little sodium sulphide. [Pg.325]

The complexation of Pu(IV) with carbonate ions is investigated by solubility measurements of 238Pu02 in neutral to alkaline solutions containing sodium carbonate and bicarbonate. The total concentration of carbonate ions and pH are varied at the constant ionic strength (I = 1.0), in which the initial pH values are adjusted by altering the ratio of carbonate to bicarbonate ions. The oxidation state of dissolved species in equilibrium solutions are determined by absorption spectrophotometry and differential pulse polarography. The most stable oxidation state of Pu in carbonate solutions is found to be Pu(IV), which is present as hydroxocarbonate or carbonate species. The formation constants of these complexes are calculated on the basis of solubility data which are determined to be a function of two variable parameters the carbonate concentration and pH. The hydrolysis reactions of Pu(IV) in the present experimental system assessed by using the literature data are taken into account for calculation of the carbonate complexation. [Pg.315]

The product of the second reaction is sodium aluminate, which contains the alumi-nate ion, Al(OH)4. Other main-group elements that form amphoteric oxides are shown in Fig. 10.7. The acidic, amphoteric, or basic character of the oxides of the d-block metals depends on their oxidation state (Fig. 10.8 also see Chapter 16). [Pg.520]

These examples show that when information is not needed to identify the compound, it is omitted from the name. In the first name, for instance, it is not necessary to tell how many sodium ions are present, because we can deduce the number from the name of the complex anion. In the second name, the oxidation state of zinc is omitted because it is always +2. In the fourth name, the single bromo ligand is not preceded by the prefix mono. [Pg.1445]

Eehrmann R, Bjerrum NJ, Poulsen EW (1978) Lower oxidation states of sulfur. 1. Spectrophotometric study of the sulfur-chlorine system in molten sodium chloride-aluminum chloride (37 63 mol%) at 150 °C. Inorg Chem 17 1195-1200... [Pg.73]

The postulation of the +4 oxidation state of cobalt is necessary to account for the retarding influence of Pb(II). The existence of a dimeric species of Co(II) acetate is required by the rate law and is confirmed by spectrophotometric and solubility measurements. The existence of ionic species of the reactants is inferred by the rate increase on addition of sodium acetate, an observation which cannot be attributed to a salt effect because sodium perchlorate produces a rate decrease. On this scheme an explanation of the effect of water on the stoichiometry is that the step... [Pg.242]

It also reacts violently with lithium in the molten state as well as with sodium, causing emissions of flaming metal. The reaction takes place with pure sodium as well as with sodium combined with calcium or sodium oxide. [Pg.195]

Sodium oxide and 2,4-dinitrotoluene, both in the soiid state, were added together to react. There was a very quick reaction that caused the nitrated derivative to combust and cause a fire in the workshop. The violence of this reaction was put down to the absence of any thinner. [Pg.298]


See other pages where Sodium oxidation state is mentioned: [Pg.250]    [Pg.256]    [Pg.477]    [Pg.26]    [Pg.437]    [Pg.504]    [Pg.119]    [Pg.469]    [Pg.115]    [Pg.116]    [Pg.327]    [Pg.317]    [Pg.130]    [Pg.324]    [Pg.228]    [Pg.1166]    [Pg.1197]    [Pg.198]    [Pg.357]    [Pg.31]    [Pg.855]    [Pg.281]    [Pg.177]    [Pg.333]    [Pg.760]    [Pg.79]    [Pg.164]    [Pg.165]    [Pg.168]    [Pg.1537]    [Pg.94]    [Pg.98]   
See also in sourсe #XX -- [ Pg.596 , Pg.596 ]

See also in sourсe #XX -- [ Pg.523 , Pg.524 ]




SEARCH



Sodium oxidation

Sodium oxide

© 2024 chempedia.info