Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium manganese phosphates

The ash content is 0.2—0.5% by weight for temperate woods and 0.5—2.0% by weight for tropical woods. The principal elemental components of wood ash are calcium and potassium with lesser amounts of magnesium, sodium, manganese, and iron. Carbonate, phosphate, sUicate, oxalate, and sulfate are likely anions. Some woods, especiaUy from the tropics, contain significant amounts of sUica. [Pg.321]

Dissolved mineral salts The principal ions found in water are calcium, magnesium, sodium, bicarbonate, sulphate, chloride and nitrate. A few parts per million of iron or manganese may sometimes be present and there may be traces of potassium salts, whose behaviour is very similar to that of sodium salts. From the corrosion point of view the small quantities of other acid radicals present, e.g. nitrite, phosphate, iodide, bromide and fluoride, have little significance. Larger concentrations of some of these ions, notably nitrite and phosphate, may act as corrosion inhibitors, but the small quantities present in natural waters will have little effect. Some of the minor constituents have other beneficial or harmful effects, e.g. there is an optimum concentration of fluoride for control of dental caries and very low iodide or high nitrate concentrations are objectionable on medical grounds. [Pg.354]

The relation between free phosphoric acid content and total phosphate content in a processing bath, whether based on iron, manganese or zinc, is very important this relation is generally referred to as the acid ratio. An excess of free acid will retard the dissociation of the primary and secondary phosphates and hinder the deposition of the tertiary phosphate coating sometimes excessive loss of metal takes place and the coating is loose and powdery. When the free acid content is too low, dissociation of phosphates (equations 15.2, 15.3 and 15.4) takes place in the solution as well as at the metal/solution interface and leads to precipitation of insoluble phosphates as sludge. The free acid content is usually determined by titrating with sodium... [Pg.707]

Oxygen (Gas), Carbon disulfide, Mercury, Anthracene, 4831 Oxygen (Liquid), Carbon, Iron(II) oxide, 4832 Oxygen difluoride, Hexafluoropropene, Oxygen, 4317 Potassium chlorate, Manganese dioxide, 4017 f Propionyl chloride, Diisopropyl ether, 1163 f Propylene oxide, Sodium hydroxide, 1225 Silver azide, 0023 Silver nitride, 0038 Sodium carbonate, 0552 Sodium peroxoborate, 0155 Tetrafluoroammonium tetrafluoroborate, 0133 Triallyl phosphate, 3184... [Pg.82]

Major constituents (greater than 5 mg/L) Minor constituents (O.Ol-lO.Omg/L) Selected trace constituents (less than 0.1 mg/L) Bicarbonate, calcium, carbonic acid, chloride, magnesium, silicon, sodium, sulfate Boron, carbonate, fluoride, iron, nitrate, potassium, strontium Aluminum, arsenic, barium, bromide, cadmium, chromium, cobalt, copper, gold, iodide, lead, Uthium, manganese, molybdenum, nickel, phosphate, radium, selenium, silver, tin, titanium, uranium, vanadium, zinc, zirconium... [Pg.26]

I. 4-methoxyacetophenone (30 //moles) was added as an internal standard. The reaction was stopped after 2 hours by partitioning the mixture between methylene chloride and saturated sodium bicarbonate solution. The aqueous layer was twice extracted with methylene chloride and the extracts combined. The products were analyzed by GC after acetylation with excess 1 1 acetic anhydride/pyridine for 24 hours at room temperature. The oxidations of anisyl alcohol, in the presence of veratryl alcohol or 1,4-dimethoxybenzene, were performed as indicated in Table III and IV in 6 ml of phosphate buffer (pH 3.0). Other conditions were the same as for the oxidation of veratryl alcohol described above. TDCSPPFeCl remaining after the reaction was estimated from its Soret band absorption before and after the reaction. For the decolorization of Poly B-411 (IV) by TDCSPPFeCl and mCPBA, 25 //moles of mCPBA were added to 25 ml 0.05% Poly B-411 containing 0.01 //moles TDCSPPFeCl, 25 //moles of manganese sulfate and 1.5 mmoles of lactic acid buffered at pH 4.5. The decolorization of Poly B-411 was followed by the decrease in absorption at 596 nm. For the electrochemical decolorization of Poly B-411 in the presence of veratryl alcohol, a two-compartment cell was used. A glassy carbon plate was used as the anode, a platinum plate as the auxiliary electrode, and a silver wire as the reference electrode. The potential was controlled at 0.900 V. Poly B-411 (50 ml, 0.005%) in pH 3 buffer was added to the anode compartment and pH 3 buffer was added to the cathode compartment to the same level. The decolorization of Poly B-411 was followed by the change in absorbance at 596 nm and the simultaneous oxidation of veratryl alcohol was followed at 310 nm. The same electrochemical apparatus was used for the decolorization of Poly B-411 adsorbed onto filter paper. Tetrabutylammonium perchlorate (TBAP) was used as supporting electrolyte when methylene chloride was the solvent. [Pg.520]

The vendor claims that the following metals have been successfully treated to parts per biUion (ppb) and detection limit levels aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, tin, uranium, vanadium, and zinc. The system is also able to remove ammonia, nitrates, phosphates, potassium, fluorides, and sodium. Studies have also been performed using Aqua-Fix to remove radionuchdes such as uranium from waste streams. [Pg.336]

Portulaca pilosa L. He Que She (aerial part) Tannins, phosphates, magnesium, iron, aluminum, manganese, calcium, potassium, sodium, urea.60 Antihemorrhagic, antiscorbutic, vulnerary properties. [Pg.133]

The major inorganic ions in bone mineral are calcium, phosphate and carbonate, with lesser amounts of magnesium, sodium, potassum, chloride, and fluoride66). Traces of iron, copper, lead, manganese, tin, aluminum, strontium, and boron have also been detected67). [Pg.62]


See other pages where Sodium manganese phosphates is mentioned: [Pg.379]    [Pg.71]    [Pg.76]    [Pg.196]    [Pg.222]    [Pg.491]    [Pg.180]    [Pg.254]    [Pg.112]    [Pg.731]    [Pg.175]    [Pg.382]    [Pg.426]    [Pg.419]    [Pg.227]    [Pg.391]    [Pg.20]    [Pg.33]    [Pg.133]    [Pg.208]    [Pg.245]    [Pg.857]    [Pg.868]    [Pg.638]    [Pg.727]    [Pg.918]    [Pg.71]    [Pg.1282]    [Pg.51]    [Pg.258]    [Pg.733]    [Pg.734]    [Pg.879]    [Pg.889]    [Pg.932]    [Pg.959]    [Pg.975]    [Pg.991]    [Pg.993]   
See also in sourсe #XX -- [ Pg.329 , Pg.330 ]




SEARCH



Manganese phosphate

Sodium phosphates

Sodium-manganese-

© 2024 chempedia.info