Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium cyanide, and

HOOCCH2CH2CH2COOH. M.p. 97-98 C, b.p. 302-304°C. Prepared by treating 1,3-dichloropropane with sodium cyanide and heating the product with NaOH. Forms an anhydride on heating at 230-280 C. glutathione, glutamylcysteinylglycine, GSH, CioH. NaOfiS. M.p. 190-192 C (decomp.). [Pg.191]

Fit a 2-litre round-bottomed flask with a two-holed stopper carrying a separatory funnel and a reflux condenser (Fig. Ill, 71,1). Place 147 g. of finely-powdered sodium cyanide and 150 ml. of water in the flask and... [Pg.409]

The filtrate contains sodium cyanide, and should be washed down the sink with a liberal quantity of water. [Pg.714]

When an organic compound is heated with a mixture of zinc powder and sodium carbonate, the nitrogen and halogens are converted into sodium cyanide and sodium hahdes respectively, and the sulphur into zinc sulphide (insoluble in water). The sodium cyanide and sodium hahdes are extracted with water and detected as in Lassaigne s method, whilst the zinc sulphide in the residue is decomposed with dilute acid and the hydrogen sulphide is identified with sodium plumbite or lead acetate paper. The test for nitrogen is thus not affected by the presence of sulphur this constitutes an advantage of the method. [Pg.1044]

DiaminO 4,4-dimethyl-l,3,5-thiadiazine hydrobromide was isolated as by-product (418). Benzene sulfonates of cyanohydrin prepared from sodium cyanide and an halobenzoaldehyde, when treated with thiourea or its derivatives, afford 2,4-diamino-5-(p-halogenophenyl)-thiazole benzene sulfonates (447). Similarly, cyanoamido thiocarbamates obtained from cyanamide and isothiocyanates yield substituted 2,4-diaminothiazoles (598). [Pg.297]

Sodium cyanide does not dissolve m butyl bromide The two reactants contact each other only at the surface of the solid sodium cyanide and the rate of reaction under these con ditions IS too slow to be of synthetic value Dissolving the sodium cyanide m water is of little help because butyl bromide is not soluble m water and reaction can occur only at the interface between the two phases Adding a small amount of benzyltrimethyl ammonium chlonde however causes pentanemtnle to form rapidly even at room temper ature The quaternary ammonium salt is acting as a catalyst it increases the reaction rate How7... [Pg.923]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Other Reactions. The reaction of Thydioxybenzaldehyde with sodium cyanide and ammonium chloride, Strecker synthesis, yields /J-hydroxyphenylglycine [938-97-6] a key intermediate in the manufacture of semisynthetic penicillins and cephalosporins (see Antibiotics, p-LACTAMs). [Pg.506]

The chlorination process, introduced in Europe in 1843, roasted ore with chlorides, followed by a hot brine leach and subsequent precipitation of the silver on copper. In 1887 it was discovered that gold and silver can be recovered by sodium cyanide, and this process displaced the dangerous chlorination process. By 1907 the cyanide process, where a cyanide solution is mixed with 2inc dust to precipitate the silver, was universally in use. [Pg.83]

Sodium was made from amalgam ia Germany duriag World War II (68). The only other commercial appHcation appears to be the Tekkosha process (74—76). In this method, preheated amalgam from a chlor—alkali cell is suppHed as anode to a second cell operating at 220—240°C. This cell has an electrolyte of fused sodium hydroxide, sodium iodide, and sodium cyanide and an iron cathode. Operating conditions are given ia Table 6. [Pg.167]

Complexing agents, which act as buffers to help control the pH and maintain control over the free metal—salt ions available to the solution and hence the ion concentration, include citric acid, sodium citrate, and sodium acetate potassium tartrate ammonium chloride. Stabilizers, which act as catalytic inhibitors that retard the spontaneous decomposition of the bath, include fluoride compounds thiourea, sodium cyanide, and urea. Stabilizers are typically not present in amounts exceeding 10 ppm. The pH of the bath is adjusted. [Pg.528]

Calcium cyanamide can be converted to calcium cyanide [592-01-8], used ia cyanidation of metallic ores and production of sodium cyanide and ferrocyanides (11) (see Cyanides). Calcium cyanamide has also been used to make cyanamide which ia turn is the starting material for important iadustrial organic syntheses. [Pg.408]

Hydrogen cyanide has been manufactnied from sodium cyanide and mineial acid, and from formamide by catalytic dehydration. As of this writing. [Pg.376]

Sodium chloride and sodium cyanide are isomorphous and form an unintermpted series of mixed crystals. The ferrocyanide ion has a marked effect on the habit of sodium cyanide crystallized from aqueous solution (50). Sodium cyanide and sodium carbonate form a molten eutectic at approximately 53 wt % sodium carbonate and 465°C. The specific conductivity of molten 98% sodium cyanide is 1.17 S /cm (51). [Pg.381]

No reaction takes place below 500°C when sodium cyanide and sodium hydroxide are heated in the absence of water and oxygen. Above 500°C, sodium carbonate, sodium cyanamide [19981-17-0] sodium oxide, and hydrogen are produced. In the presence of small amounts of water at 500°C decomposition occurs with the formation of ammonia and sodium formate, and the latter is converted into sodium carbonate and hydrogen by the caustic soda. In the presence of excess oxygen, sodium carbonate, nitrogen, and water are produced (53). [Pg.382]

Miscellaneous uses for sodium cyanide include heat treating, metal stripping, and compounds used for clearing smut. Treatment of wood chips with sodium cyanide and CaCl2 reportedly increases the kraft cooking yield of pulp (qv) (64). [Pg.384]

The method in the procedure differs from any previously described in that the sodium bisulfite addition product of benzal-dehyde is prepared in the presence of sodium cyanide and the nitrile is formed immediately. [Pg.62]

From ethyl chloroacetate and sodium cyanide, and by esteri-fying cyanoacetic acid. Stephens, J. Soc. Chem. Ind. 43, 313T, 327T (1924). [Pg.106]

It is liquefied by conducting the gas through a condenser cooled with ice water. Where difficult to obtain, it may be prepared by passing chlorine gas through a stirred suspension of sodium tetrakis(cyano-C)zincate prepared in situ from sodium cyanide and zinc sulfate. ... [Pg.90]

This method is an adaptation of that of Dengel. -Methoxy-phenylacetonitrile can also be prepared by the metathetical reaction of anisyl chloride with alkali cyanides in a variety of aqueous solvent mixtures by the nitration of phenylaceto-nitrile, followed by reduction, diazotization, hydrolysis, and methylation 1 by the reduction of ct-benzoxy- -methoxy-phenylacetonitrile (prepared from anisaldehyde, sodium cyanide, and benzoyl chloride) and by the reaction of acetic anhydride with the oxime of -methoxyphenylpyruvic acid. ... [Pg.52]

A thiazole derivative that incorporates a fragment of the amphetamine molecule shows some CNS stimulant activity more specifically, the compound antagonizes the depression caused by overdoses of barbiturates and narcotics. Reaction of benzalde-hyde with sodium cyanide and benzenesulfonyl chloride gives the toluenesulfony1 ester of the cyanohydrin (141). Reaction of this with thiourea leads directly to aminophenazole (143) It is probable the reaction proceeds by displacement of the tosylate by the thiourea sulfur to give 142 addition of the amino group to the nitrile followed by tautomerization affords the observed product. ... [Pg.248]

The 5-methyl-5-ethyloxazolidine-2,4-dione may be prepared by reacting methyl ethyl ketone with sodium cyanide and with ammonium thiocyanate followed by desulfurization. This intermediate may also be prepared by condensing a-hydroxy-a-methylbutyramide with ethyl chlorocarbonate or by condensing ethyl a-hydroxy-a-methylbutyrate with urea. Another method described (Traube and Aschar, Ber., 46, 2077-1913) consists in the condensation of ethyl a-hydroxy-a-methylbutyrate with guanidine followed by hydrolysis. [Pg.1162]

Modern solutions fall mainly into three types (a) the plain cyanide bath which contains typically 20-25 g/1 of copper cyanide, 25-30 g/1 total sodium cyanide (6.2 g/1 free sodium cyanide), and is operated at 21-38 C and 110-160 A/m (b) the Rochelle copper bath to which is added 35-50g/1 of Rochelle salt and which is used at 66 C at up to 645 A/m and (c) the high-efficiency cyanide baths which may contain up to 125 g/1 of copper cyanide, 6-11 g/1 of free sodium or potassium cyanide, 15-30 g/1 of sodium or potassium hydroxide, and are operated at up to 6-9A/dm and 65-90 C. Most bright cyanide copper baths are of the high-efficiency type and, in addition, contain one or more of the many patented brightening and levelling agents available. Periodic reverse (p.r.) current is also sometimes used to produce smoother deposits. [Pg.518]

Resistance to corrosion of electroless nickel, both as-deposited and, in most cases, after heating to 750°C, is listed by Metzger for about 80 chemicals and other products. Resistance was generally satisfactory, with attack at a rate below 13 /im/year. The only substances causing faster attack were acetic acid, ammonium hydroxide or phosphate, aerated ammonium sulphate, benzyl chloride, boric acid, fluorophosphoric acid, hydrochloric acid, aerated lactic acid, aerated lemon juice, sodium cyanide and sulphuric acid. [Pg.537]

To a solution of l. 47 g (0.03 mol) of sodium cyanide and 4.73 g (0.03 mol) of (-)-(.S)-x-methylbenzylamine hydrochloride in 5 mL of cold water is added 1 g (8.3 mmol) of free ( - )-(.S )-a-mcthylbcnzylaininc in 200 mL of CHjOH. 1.32 g (0.03 mol) of acetaldehyde is added at 0°C and the clear solution is kept at r.t. for five days. After evaporation of the solvent in vacuo, the residue is dissolved in 50 mL of 1 N HC1 and the solution is extracted twice with diethyl ether. After addition of 12 N HCl to adjust the acid concentration to approximately 5 N, the solution is retluxed for 6 h. The HCl is evaporated in vacuo and the residue is dried over sodium hydroxide. The crude. V-x-methylbenzylalaninc hydrochloride is dissolved in 200 mL of 50% ethanol and the pH is adjusted to 6.0 with NaHCOj. To this solution, 3.5 g of palladium hydroxide is added. After hydrogenolysis for 10 h, the catalyst is filtered off and washed with hot water. The filtrate is concentrated to 30%, and the pH is adjusted to 1 with dilute IIC1. The solution is evaporated to dryness and the alanine hydrochloride is extracted with three 20-inL portions of absolute ethanol. After cooling overnight at — 50°C, the precipitated salt is filtered. Pyridine is added to the alcoholic solution to precipitate crude alanine, which is dissolved in 2.5 mL of water. The pH is adjusted with pyridine to 5.5-6.0, and 10 mL of absolute ethanol arc added yield 0.45 g (17% over four steps) mp 290 C [a] 7 + 13.13 (0 = 2.32. 6 N IICi). [Pg.786]

Recently, this procedure was slightly modified by using sodium cyanide and an equivalent amount of the hydrochloride of the chiral amine, instead of adding acetic acid46, which resulted in a slightly improved yield and optical purity of the product. [Pg.789]

Stereoselective Strecker reactions with galactosylamine 1 can also be achieved with sodium cyanide and acetic acid in 2-propanol. The reactions, however, proceed slowly and with a lower stereoselectivity, giving diastereomeric ratios of the products between 3 1 and 7 1. The scope of the method can be extended to other glycosylamines, e.g., 2,3,4-tri-O-pivaloyl-a-D-arabinosyl-amine which allows the stereoselective synthesis of (A )-amino nitriles61,62. [Pg.794]

The ice bath is removed after addition of the sodium cyanide, and the mixture is stirred for 4 hours. The organic layer is separated, and the aqueous layer is extracted with three 500-ml. portions of ether. The combined ethereal extracts and organic layer are washed with two 100-ml. portions of cold water and dried over anhydrous magnesium sulfate. The ethereal solution is filtered, and the ether is removed at atmospheric pressure. The residue is transferred to a vacuum distillation system and distilled under reduced pressure (Cauiionl See Note 2). The yield of dlmethylaminophenylacetonitrile boiling at 88-90°/l.9-2.1 tnm. is 842 844 g. (87-88%) (Notes 3 and 4). [Pg.25]

When hot, ammonia and compounds, which contain nitrogen-hydrogen bonds eg ammonium salts and cyanides react violently with chlorates and alkaline perchlorates. Diammonlum sulphate, ammonium chloride, hydroxyl-amine, hydrazine, sodamide, sodium cyanide and ammonium thiocyanate have been cited. So far as hydrazine is concerned, the danger comes from the formation of a complex with sodium or lithium perchlorate, which is explosive when ground. Many of these interactions are explosive but the factors which determine the seriousness of the accident are not known. [Pg.191]


See other pages where Sodium cyanide, and is mentioned: [Pg.166]    [Pg.259]    [Pg.326]    [Pg.409]    [Pg.410]    [Pg.175]    [Pg.883]    [Pg.384]    [Pg.38]    [Pg.883]    [Pg.788]    [Pg.228]    [Pg.144]    [Pg.409]    [Pg.410]    [Pg.564]   


SEARCH



4-cyanotelluro-l -methoxyfrom 4-methoxyphenyl tellurium tribromide, sodium disulfite and potassium cyanide

Condensation, of acetoacetic ester, acid with sodium cyanide and hydrazine

Sodium cyanide

© 2024 chempedia.info