Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strecker stereoselective

A very efficient and universal method has been developed for the production of optically pue L- and D-amino adds. The prindple is based on the enantioselective hydrolysis of D,L-amino add amides. The stable D,L-amino add amides are effidently prepared under mild reaction conditions starting from simple raw materials (Figure A8.2). Thus reaction of an aldehyde with hydrogen cyanide in ammonia (Strecker reaction) gives rise to the formation of the amino nitrile. The aminonitrile is converted in a high yield to the D,L-amino add amide under alkaline conditions in the presence of a catalytic amount of acetone. The resolution step is accomplished with permeabilised whole cells of Pseudomonas putida ATCC 12633. A nearly 100% stereoselectivity in hydrolysing only the L-amino add amide is combined with a very broad substrate spedfidty. [Pg.277]

The method is very useful for the synthesis of physiologically interesting a-mcthylamino acids, e.g., methyl dopa from the 3,4-dimethoxybenzyl derivative. The excellent stereoselection achieved in the process, however, is caused by the preferential crystallization of one pure diastereomerfrom the equilibrium mixture formed in the reversible Strecker reaction. Thus, the pure diastcrcomers with benzyl substituents, dissolved in chloroform or acetonitrile, give equilibrium mixtures of both diastereomers in a ratio of about 7 347. This effect has also been found for other s-methylamino nitriles of quite different structure49. If the amino nitrile (R1 = Bn) is synthesized in acetonitrile solution, the diastereomers do not crystallize while immediate hydrolysis indicates a ratio of the diastereomeric amino nitriles (S)I(R) of 86 1447. [Pg.790]

An efficient stereoselective Strecker synthesis of phenylglycine has been achieved using the tert-butyl ester tm-leucine as the chiral auxiliary. Its benzaldimine reacts with hydrogen cyanide in hexane at — 23 °C to furnish the ( )-diastereomer with the excellent diastereoselectivity of >98 254. [Pg.792]

Stereoselective Strecker reactions with galactosylamine 1 can also be achieved with sodium cyanide and acetic acid in 2-propanol. The reactions, however, proceed slowly and with a lower stereoselectivity, giving diastereomeric ratios of the products between 3 1 and 7 1. The scope of the method can be extended to other glycosylamines, e.g., 2,3,4-tri-O-pivaloyl-a-D-arabinosyl-amine which allows the stereoselective synthesis of (A )-amino nitriles61,62. [Pg.794]

The ease of the Strecker synthesis from aldehydes makes a-aminonitriles an attractive and important route to a-amino acids. Fortunately, the microbial world offers a number of enzymes for carrying out the necessary conversions, some of them highly stereoselective. Nitrilases catalyze a direct conversion of nitrile into carboxylic acid (Equation (11)), whereas nitrile hydratases catalyze formation of the amide, which can then be hydrolyzed to the carboxylic acid in a second step (Equation (12)). In a recent survey, with a view to bioremediation and synthesis, Brady et al have surveyed the ability of a wide range of bacteria and yeasts to grow on diverse nitriles and amides as sole nitrogen source. This provides a rich source of information on enzymes for future application. [Pg.86]

Scheme 6.165 Enantioselective Strecker reactions catalyzed by biflinctional hydrogen-bonding guanidine organocatalyst 178. Catalytic action of 178 HCN hydrogen bonds to 178 and generates a guanidinium cyanide complex after protonation, which activates the aldimine through single hydrogen bonding and facilitates stereoselective cyanide attack and product formation. Scheme 6.165 Enantioselective Strecker reactions catalyzed by biflinctional hydrogen-bonding guanidine organocatalyst 178. Catalytic action of 178 HCN hydrogen bonds to 178 and generates a guanidinium cyanide complex after protonation, which activates the aldimine through single hydrogen bonding and facilitates stereoselective cyanide attack and product formation.
Good stereoselectivities have been obtained with the addition of organometallics onto homochiral cyclic acylimines (Figure 5.27), or onto sulfmylimines derived from trifluoropyruvate (Figure 5.28). " Asymmetric Strecker reaction of jS-sulfmyl... [Pg.165]

An enantioselective Strecker reaction involving Brpnsted acid catalysis uses a BINOL-phosphoric acid, which affords ees up to 93% in hydrocyanations of aromatic aldimines in toluene at -40 °C.67 The asymmetric induction processes in the stereoselective synthesis of both optically active cis- and trans-l-amino-2-hydroxycyclohexane-l -carboxylic acids via a Strecker reaction have been investigated.68 A 2-pyridylsulfonyl group has been used as a novel stereocontroller in a Strecker-type process ees up to 94% are suggested to arise from the ability of a chiral Lewis acid to coordinate to one of the sulfonyl (g)... [Pg.10]

Aldehydes, ketones, and acetals react with allyltrimethylsilane in the presence of a catalytic amount of BiX3 (X = C1, Br, OTf) to give homoallyl alcohols or homoallyl alkyl ethers (Equation (52)).91-93 The BiX3-catalyzed allylation of aldehydes and sequential intramolecular etherification of the resulting homoallylic silyl ethers are involved in the stereoselective synthesis of polysubstituted tetrahydropyrans (Equation (53)).94,95 Similarly, these Lewis acids catalyze the cyanation of aldehydes and ketones with cyanotrimethylsilane. When a chiral bismuth(m) catalyst is used in the cyanation, cyanohydrines are obtained in up to 72% ee (Equation (54)). a-Aminonitriles are prepared directly from aldehydes, amines, and cyanotrimethysilane by the BiCl3-catalyzed Strecker-type reaction. [Pg.436]

DSM developed a slightly different approach towards enantiopure amino acids. Instead of performing the Strecker synthesis with a complete hydrolysis of the nitrile to the acid it is stopped at the amide stage. Then a stereoselective amino acid amidase from Pseudomonas putida is employed for the enantioselective second hydrolysis step [83], yielding enantiopure amino acids [34, 77, 78]. Although the reaction is a kinetic resolution and thus the yields are never higher than 50% this approach is overall more efficient. No acylation step is necessary and the atom efficiency is thus much higher. A drawback is that the racemisation has to be performed via the Schiff s base of the D-amide (Scheme 6.23). [Pg.281]

The amino acid synthesis from Strecker has been known since 1850 [25]. Stereoselective versions of this synthesis start with chiral amines, which are condensed with carbonyl compounds to form imines. Addition of hydrogen cyanide and subsequent hydrolysis of the amino nitriles yields the amino acids. When ketones are used for the condensation, a-alkylated amino acids are obtained in high yields and optical purities... [Pg.28]

Strecker synthesis attempts have been made to optimize the reaction conditions [4b] and to achieve stereoselective syntheses [4c-hJ. Usually chiral amines such as 7 have been employed, which can, for example, on reaction with 6 be converted to the thiophene-substituted amino acid 8 [4c]. [Pg.53]

In Ugi s four-component condensation, imine formation from an aldehyde 1 and an amine 2 is likewise the initiating step [5, 6] a carboxylic acid 9 and an isonitrile 10 are the other reaction components, which finally yield the bisamide 11. Both for this reaction and the Strecker synthesis, the galactosylamine 12 is particularly suitable for carrying out a stereoselective reaction (synthesis of 13) [4d-e, 5f. With an aminoglucopyranose as a chiral auxiliary, the stereoselectivity of the reaction can be further increased [5b]. Amino acids as condensation components yield particularly impressive results. For instance, the imino-... [Pg.53]

To create stereochemical diversity within MCRs there is need for stereoselective (or -specific) reactions. Since many MCRs involve flat intermediates, like imines and a,p-unsaturated ketones, they result in the formation of racemic products. Moreover, often mixtures of diastereomers are obtained if more than one stereo-genic centre is formed. However, there are several examples known of asymmetric induction, by the use of chiral building blocks (diastereoselective reactions). For example, it has been successfully applied to the Strecker, Mannich, Biginelli, Petasis, Passerini, Ugi, and many other MCRs, which has been excellently reviewed by Yus and coworkers [33]. Enantioselective MCRs, which generally proved to be much harder, have been performed with organometaUic chiral catalysts and orga-nocatalysts [33, 34]. [Pg.103]

SCHEME 10.49 Stereoselective Strecker s3mthesis using glycosylamines. [Pg.468]

Kunz, H, Sager, W, Schanzenbach, D, Decker, M, Carbohydrates as chiral templates stereoselective Strecker synthesis of D-a-amino nitriles and acids using 0-pivaloylated D-galactosylamine as the auxiliary, Liebigs Ann. Chem., 649-654, 1991. [Pg.500]

The target compound 8 is derived from a known carboxylic acid 54 [85], which is obtained via reductive cleavage of the carbon-sulfur bond of bicyclic amide 53 whose carboxylic acid congener is an intermediate of the Merck s approach [85]. The compound 53 is obtained through amidation and subsequent cyclization of 5y -a-amino nitrile syn-Sl. The compound syn-51 should be prepared stereoselectively by Strecker reaction of a-amino aldehyde 51 that can be readily prepared from L-cysteine. [Pg.283]

Wang, H., Zhao, X., Li, Y. and Lu, L. (2006) Solvent-controlled asymmetric Strecker reaction stereoselective synthesis of a-trifluoromethylated a-amino acids. Org. Lett., 8, 1379-1381. [Pg.255]


See other pages where Strecker stereoselective is mentioned: [Pg.781]    [Pg.782]    [Pg.784]    [Pg.785]    [Pg.789]    [Pg.791]    [Pg.792]    [Pg.797]    [Pg.188]    [Pg.195]    [Pg.338]    [Pg.137]    [Pg.500]    [Pg.106]    [Pg.252]    [Pg.305]    [Pg.54]    [Pg.59]    [Pg.447]    [Pg.293]    [Pg.228]   
See also in sourсe #XX -- [ Pg.106 ]

See also in sourсe #XX -- [ Pg.377 ]




SEARCH



Stereoselectivity Strecker synthesis

Strecker

© 2024 chempedia.info