Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Site chemical reactivity

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

All of the material in this text and most of chemistry generally can be understood on the basis of what physicists call the electromagnetic force Its major principle is that opposite charges attract and like charges repel As you learn organic chemistry a good way to start to connect structure to properties such as chemical reactivity is to find the positive part of one molecule and the neg ative part of another Most of the time these will be the reactive sites... [Pg.16]

Isopentenyl pyrophosphate and dimethylallyl pyrophosphate are structurally sim liar—both contain a double bond and a pyrophosphate ester unit—but the chemical reactivity expressed by each is different The principal site of reaction m dimethylallyl pyrophosphate is the carbon that bears the pyrophosphate group Pyrophosphate is a reasonably good leaving group m nucleophilic substitution reactions especially when as in dimethylallyl pyrophosphate it is located at an allylic carbon Isopentenyl pyrophosphate on the other hand does not have its leaving group attached to an allylic carbon and is far less reactive than dimethylallyl pyrophosphate toward nucleophilic reagents The principal site of reaction m isopentenyl pyrophosphate is the carbon-carbon double bond which like the double bonds of simple alkenes is reactive toward electrophiles... [Pg.1087]

Covalent Bonds. Fiber-reactive dyes, ie, dyestuff molecules containing reactive groups, are adsorbed onto the fiber and react with specific sites (chemical groups) in the fiber polymer to form covalent bonds. The reaction is irreversible, so active dye is removed from the equiUbrium system (it becomes part of the fiber) and this causes more dye to adsorb onto the fiber to re-estabflsh the equiUbrium of active dye between fiber and aqueous dyebath phases (see Dyes, reactive). [Pg.350]

Turning to non-metallic catalysts, photoluminescence studies of alkaline-earth oxides in dre near-ultra-violet region show excitation of electrons corresponding to duee types of surface sites for the oxide ions which dominate the surface sUmcture. These sites can be described as having different cation co-ordination, which is normally six in the bulk, depending on the surface location. Ions on a flat surface have a co-ordination number of 5 (denoted 5c), those on the edges 4 (4c), and dre kiirk sites have co-ordination number 3 (3c). The latter can be expected to have higher chemical reactivity than 4c and 5c sites, as was postulated for dre evaporation mechanism. [Pg.124]

The chemical reactivity of these two substituted ethylenes is in agreement with the ideas encompassed by both the MO and resonance descriptions. Enamines, as amino-substituted alkenes are called, are vety reactive toward electrophilic species, and it is the p carbon that is the site of attack. For example, enamines are protonated on the carbon. Acrolein is an electrophilic alkene, as predicted, and the nucleophile attacks the P carbon. [Pg.50]

What does functional-group polarity mean with respect to chemical reactivity Because unlike charges attract, the fundamental characteristic of all polar organic reactions is that electron-rich sites react with electron-poor sites. Bonds are made when an electron-rich atom shares a pair of electrons with an electron-poor atom, and bonds are broken when one atom leaves with both electrons from the former bond. [Pg.144]

Ribosomal Protein Synthesis Inhibitors. Figure 5 Nucleotides at the binding sites of chloramphenicol, erythromycin and clindamycin at the peptidyl transferase center. The nucleotides that are within 4.4 A of the antibiotics chloramphenicol, erythromycin and clindamycin in 50S-antibiotic complexes are indicated with the letters C, E, and L, respectively, on the secondary structure of the peptidyl transferase loop region of 23S rRNA (the sequence shown is that of E. coll). The sites of drug resistance in one or more peptidyl transferase antibiotics due to base changes (solid circles) and lack of modification (solid square) are indicated. Nucleotides that display altered chemical reactivity in the presence of one or more peptidyl transferase antibiotics are boxed. [Pg.1089]

Molybdenum disulfide has a layered structure. Each layer is a sandwich consisting of between two layers of ions (Fig. 9.5). The sulfur ions form trigonal prisms and half of the prisms contain a molybdenum ion in the middle. The chemical reactivity of M0S2 is associated with the edges of the sandwich, whereas the basal planes are much less reactive. The edges form the sites where gases adsorb and where the catalytic activity resides. [Pg.357]

The presence of a site with a low metal-metal coordination is compatible with the non-crystalline nature of the cobalt deposits [64]. It is to be expected that these sites exhibit different chemical reactivity than the usual adsorption sites. This can be verified by subsequent deposition of a small amount (0.1 A) of Pd atoms, which are known to nucleate exclusively on the cobalt particles [64]. The corresponding IR spectrum is shown as the bottom trace in Fig. 6. It is seen that an additional peak appears at 2105 cm which is readily assigned to CO bound terminally to Pd. More importantly, the growth of this Pd feature is completely at the expense of the carbonyl species, indicating that Pd nucleates almost exclusively at these low coordinated sites and prevents the formation of the carbonyl species. [Pg.129]

Surface reconstruction, which had dominated much of surface science through LEED studies, was very much a central theme of STM in the early 1990s but with surprisingly little attention given to chemical reactivity and the origin of active sites in heterogeneous catalysis. This was in part due to the lack of in situ chemical information that could be directly related to the STM images and... [Pg.54]

In some situations, the direct attachment of a large group (such as fluorescamine) to a biologically active substrate can reduce activity. This is due to steric hindrance which can cause a change in conformation or physically block an active site. This condition can be obviated in many cases by attaching the bulky moiety to a spacer arm composed of two or more methylene groups. To this end, a variant of F-D was also synthesized in which a spacer arm of beta-alanine was inserted between the fluorescent and chemically reactive moieties of the reagent. [Pg.65]

The understanding of the catalytic function of enzymes is a prime objective in biomolecular science. In the last decade, significant developments in computational approaches have made quantum chemistry a powerful tool for the study of enzymatic mechanisms. In all applications of quantum chemistry to proteins, a key concept is the active site, i.e. a local region where the chemical reactivity takes place. The concept of the active site makes it possible to scale down large enzymatic systems to models small enough to be handled by accurate quantum chemistry methods. [Pg.30]

Data Structures. Inspection of the unit simulation equation (Equation 7) indicates the kinds of input data required by aquatic fate codes. These data can be classified as chemical, environmental, and loading data sets. The chemical data set , which are composed of the chemical reactivity and speciation data, can be developed from laboratory investigations. The environmental data, representing the driving forces that constrain the expression of chemical properties in real systems, can be obtained from site-specific limnological field investigations or as summary data sets developed from literature surveys. Allochthonous chemical loadings can be developed as worst-case estimates, via the outputs of terrestrial models, or, when appropriate, via direct field measurement. [Pg.34]


See other pages where Site chemical reactivity is mentioned: [Pg.2348]    [Pg.2348]    [Pg.1942]    [Pg.91]    [Pg.469]    [Pg.440]    [Pg.41]    [Pg.41]    [Pg.691]    [Pg.1072]    [Pg.1014]    [Pg.315]    [Pg.90]    [Pg.227]    [Pg.37]    [Pg.522]    [Pg.363]    [Pg.300]    [Pg.107]    [Pg.131]    [Pg.910]    [Pg.298]    [Pg.358]    [Pg.1]    [Pg.4]    [Pg.81]    [Pg.175]    [Pg.50]    [Pg.50]    [Pg.184]    [Pg.10]    [Pg.25]    [Pg.80]    [Pg.114]    [Pg.31]    [Pg.217]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Chemical reactions reactive site

Chemicals sites

Reactive sites

© 2024 chempedia.info