Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions reactive site

If one of the phases is a solid, the distribution is more appropriately described in terms of adsorption. Such adsorption can be a combination of unspecific adsorption of the environmental chemical to the solid smface, electrostatic interactions between the charged chemical and oppositely charged sitrface sites, and the covalent reaction of the chemical with reactive sites at the surface. Quantitative expressions rely again on concentration ratios, but equihbrium adsorption coefficients are less likely to be constant over wide concentration ranges. These relationships thus need to be characterized by nonlinear adsorption isotherms, such as those formulated by Langmuir and Freimdhch. [Pg.248]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

The side groups of the amino acids vary markedly in size and chemical nature and play an important role in the chemical reactions of the fiber. For example, the basic groups (hisidine, arginine, and lysine) can attract acid (anionic) dyes, and in addition the side chains of lysine and hisidine are important sites for the attachment of reactive dyes. The sulfur-containing amino acid cysteine plays a very important role, because almost all of the cysteine residues in the fiber are linked in pairs to form cystine residues, which provide a disulfide bridge —S—S— between different polypeptide molecules or between segments of the same molecules as shown ... [Pg.343]

Polyolefins such as polyethylene and polypropylene contain only C—C and C—H bonds and may be considered as high molecular weight paraffins. Like the simpler paraffins they are somewhat inert and their major chemical reaction is substitution, e.g. halogenation. In addition the branched polyethylenes and the higher polyolefins contain tertiary carbon atoms which are reactive sites for oxidation. Because of this it is necessary to add antioxidants to stabilise the polymers against oxidation Some polyolefins may be cross-linked by peroxides. [Pg.95]

The same chemical mechanisms and driving forces presented for phenol-formaldehyde resins apply to resorcinol resins. Resorcinol reacts readily with formaldehyde to produce resins (Fig. 2) which harden at ambient temperatures if formaldehyde is added. The initial condensation reaction, in which A-stage liquid resins are formed, leads to the formation of linear condensates only when the resorcinol/formaldehyde molar ratio is approximately 1 1 [119]. This reflects the reactivity of the two main reactive sites (positions 4 and 6) of resorcinol [120]. However, reaction with the remaining reactive but sterically hindered site (2-positiori) between the hydroxyl functions also occurs [119]. In relation to the weights of resorcinol-formaldehyde condensates which are isolated and on a molar basis, the proportion of 4- plus 6-linkages relative to 2-linkages is 10.5 1. However, it must be noted that the first-mentioned pair represents two condensa-... [Pg.1060]

The thermal (or photochemical) decomposition of the azo group gives rise to a radically initiated polymerization. The reactive site F, the transformation site, however, can, depending on its chemical nature, initiate a condensation or addition type reaction. It can also start radical or ionic polymerizations. F may also terminate a polymerization or even enable the azo initiator to act as a monomer in chain polymerizations. [Pg.735]

Inhibitors must possess chemical and physical properties that will ensure absorption by root tips or penetration by foliar surfaces, and translocation to the active site. Once there they must assume the precise spatial configuration required to complement the molecular architecture of the active center if they are to block the key reaction. A comprehension of comparative biochemistry and information on how plants differ in the architecture of the reactive sites should assist in developing truly selective herbicides. [Pg.140]

Tethering may be a reversible or an irreversible process. Irreversible grafting is typically accomplished by chemical bonding. The number of grafted chains is controlled by the number of grafting sites and their functionality, and then ultimately by the extent of the chemical reaction. The reaction kinetics may reflect the potential barrier confronting reactive chains which try to penetrate the tethered layer. Reversible grafting is accomplished via the self-assembly of polymeric surfactants and end-functionalized polymers [59]. In this case, the surface density and all other characteristic dimensions of the structure are controlled by thermodynamic equilibrium, albeit with possible kinetic effects. In this instance, the equilibrium condition involves the penalties due to the deformation of tethered chains. [Pg.46]

Because of the unambiguous reactive sites of monomers and the high chemo-and stereoselectivity of transition-metal-catalyzed coupling reactions, polymers prepared by transition metal coupling have predictable chemical structures. Functional groups can be easily and selectively introduced at the desired position within die polymer chains. Therefore, polymers widi specific properties can be rationally designed and synthesized. [Pg.477]

The time-dependent nature of migration and chemical reaction of free radicals [30] in irradiated polymers can play an important role in altering the polymer structure and properties, e.g., cross-link formation via reactive sites or chain scission, or postirradiation oxidative influences (irradiation in presence of air or oxygen). [Pg.855]

Approximation refers to the bringing together of the substrate molecules and reactive functionalities of the enzyme active site into the required proximity and orientation for rapid reaction. Consider the reaction of two molecules, A and B, to form a covalent product A-B. For this reaction to occur in solution, the two molecules would need to encounter each other through diffusion-controlled collisions. The rate of collision is dependent on the temperature of the solution and molar concentrations of reactants. The physiological conditions that support human life, however, do not allow for significant variations in temperature or molarity of substrates. For a collision to lead to bond formation, the two molecules would need to encounter one another in a precise orientation to effect the molecular orbitial distortions necessary for transition state attainment. The chemical reaction would also require... [Pg.27]


See other pages where Chemical reactions reactive site is mentioned: [Pg.405]    [Pg.116]    [Pg.226]    [Pg.417]    [Pg.480]    [Pg.470]    [Pg.440]    [Pg.242]    [Pg.314]    [Pg.32]    [Pg.1]    [Pg.438]    [Pg.96]    [Pg.315]    [Pg.1]    [Pg.29]    [Pg.423]    [Pg.426]    [Pg.748]    [Pg.89]    [Pg.389]    [Pg.14]    [Pg.174]    [Pg.81]    [Pg.26]    [Pg.510]    [Pg.72]    [Pg.27]    [Pg.178]    [Pg.25]    [Pg.394]    [Pg.10]    [Pg.25]    [Pg.995]    [Pg.372]    [Pg.373]    [Pg.80]    [Pg.173]    [Pg.597]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



Chemical reaction reactivity

Chemicals sites

Reaction site

Reactivation reaction

Reactive Chemical Reactions

Reactive sites

Reactivity reaction

Site chemical reactivity

© 2024 chempedia.info