Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single-electron mechanism

If the single-electron mechanism has not been demonstrated to be the rate-controlling process by an independent method, then, in the publication of the experimental results, it is preferable to replace the assumed quantity ax by the conventional value cm, provided that the charge number of the overall reaction is known (e.g. in an overall two-electron reaction it is preferable to replace = 0.5 by or = 0.25). If the independence of the charge transfer coefficient on the potential has not been demonstrated for the given potential range, then it is useful to determine it for the given potential from the relation for a cathodic electrode reaction (cf. Eq. 5.2.37) ... [Pg.275]

An immediate reaction takes place between 178 or 179 and 3,5-di-tert-butyl-l,2-benzoquinone to lead to the dioxagermole 189, the formal adduct of the germylene (ArO)2Ge with the quinone. A single electron mechanism, supported by an ESR study and depicted in Scheme 37, was postulated to account for the formation of 189.132... [Pg.162]

Scheme 7. Proposed Single-Electron Mechanism for the Reduction of EC and DEC... Scheme 7. Proposed Single-Electron Mechanism for the Reduction of EC and DEC...
Aurbach and co-workers performed a series of ex situ as well as in situ spectroscopic analyses on the surface of the working electrode upon which the cyclic voltammetry of electrolytes was carried out. On the basis of the functionalities detected in FT-IR, X-ray microanalysis, and nuclear magnetic resonance (NMR) studies, they were able to investigate the mechanisms involved in the reduction process of carbonate solvents and proposed that, upon reduction, these solvents mainly form lithium alkyl carbonates (RCOsLi), which are sensitive to various contaminants in the electrolyte system. For example, the presence of CO2 or trace moisture would cause the formation of Li2COs. This peculiar reduction product has been observed on all occasions when cyclic carbonates are present, and it seems to be independent of the nature of the working electrodes. A single electron mechanism has been shown for PC reduction in Scheme 1, while those of EC and linear carbonates are shown in Scheme 7. ... [Pg.86]

The photo-induced electron transfer of l,4-bis(methylene)cyclohexane in acetonitrile-methanol solution with 1,4-dicyanobenzene (DCB) affords two products, both consistent with nucleophilic attack on the radical cation followed by reduction and protonation or by combination with DCB ).63 In the absence of a nucleophile, the product mixture is highly complex, as is the case under electro-oxidative conditions. Under UV irradiation, /nmv-stilbene undergoes dimerization and oxygenation (to benzaldehyde) by a single-electron mechanism in the presence of a sensitizer such as 2,4,6-triphenylpyrilium tetrafluoroborate (TPT).64 This reaction was found to yield a similar product mixture with the sulfur analogue of TPT and their relative merits as well as electrochemical and photophysical properties are discussed. [Pg.145]

Path h represents a general oxidation process of the metal that may occur by a single electron mechanism. It is likely that some electrophilic cleavages occur under these conditions, but experimental evidence is difficult to obtain. Discussion of such mechanisms is beyond the scope of this text.80... [Pg.291]

Virtually all non-trivial collision theories are based on the impact-parameter method and on the independent-electron model, where one active electron moves under the influence of the combined field of the nuclei and the remaining electrons frozen in their initial state. Most theories additionally rely on much more serious assumptions as, e.g., adiabatic or sudden electronic transitions, perturbative or even classical projectile/electron interactions. All these assumptions are circumvented in this work by solving the time-dependent Schrodinger equation numerically exact using the atomic-orbital coupled-channel (AO) method. This non-perturbative method provides full information of the basic single-electron mechanisms such as target excitation and ionization, electron capture and projectile excitation and ionization. Since the complex populations amplitudes are available for all important states as a function of time at any given impact parameter, practically all experimentally observable quantities may be computed. [Pg.42]

The oxidase/oxygenase reactivity distinction will be used throughout the chapter. Molecular oxygen may also react via an autoxidation, single-electron mechanism, but the nonmetal-centered reactivity of dioxygen will not be discussed in this chapter. Rather, the focus shall be on the advancement of chemoselective reactions through modifications of the metal[Pg.159]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

The mechanism includes two single electron transfers (steps 1 and 3) and two proton transfers (steps 2 and 4) Experimental evidence indicates that step 2 is rate determining and it is believed that the observed trans stereochemistry reflects the dis tribution of the two stereoisomeric alkenyl radical intermediates formed in this step... [Pg.377]

The mechanism by which the Birch reduction of benzene takes place (Figure 118) IS analogous to the mechanism for the metal-ammonia reduction of alkynes It involves a sequence of four steps m which steps 1 and 3 are single electron transfers from the metal and steps 2 and 4 are proton transfers from the alcohol... [Pg.439]

For the hydrogen atom, and for the hydrogen-like ions such as He, Li, ..., with a single electron in the field of a nucleus with charge +Ze, the hamiltonian (the quantum mechanical form of the energy) is given by... [Pg.199]

The hydrogen atom presented a unique opportunity in the development of quantum mechanics. The single electron moves in a coulombic field, free from fhe effecfs of infer-elecfron repulsions. This has fwo imporfanf consequences fhaf do nof apply fo any atom wifh fwo or more elecfrons ... [Pg.216]

Mechanistic studies on the formation of PPS from polymerization of copper(I) 4-bromobenzenethiolate in quinoline under inert atmosphere at 200°C have been pubUshed (91). PPS synthesized by this synthetic procedure is characterized by high molar mass at low conversions and esr signals consistent with a single-electron-transfer mechanism, the Sj l-type mechanism described earlier (22). [Pg.445]

The reactivities of the substrate and the nucleophilic reagent change vyhen fluorine atoms are introduced into their structures This perturbation becomes more impor tant when the number of atoms of this element increases A striking example is the reactivity of alkyl halides S l and mechanisms operate when few fluorine atoms are incorporated in the aliphatic chain, but perfluoroalkyl halides are usually resistant to these classical processes However, formal substitution at carbon can arise from other mecharasms For example nucleophilic attack at chlorine, bromine, or iodine (halogenophilic reaction, occurring either by a direct electron-pair transfer or by two successive one-electron transfers) gives carbanions These intermediates can then decompose to carbenes or olefins, which react further (see equations 15 and 47) Single-electron transfer (SET) from the nucleophile to the halide can produce intermediate radicals that react by an SrnI process (see equation 57) When these chain mechanisms can occur, they allow reactions that were previously unknown Perfluoroalkylation, which used to be very rare, can now be accomplished by new methods (see for example equations 48-56, 65-70, 79, 107-108, 110, 113-135, 138-141, and 145-146)... [Pg.446]

The version of quantum mechanics we have developed so far does not satisfy the requirements of the special theory of relativity. We can see this by noting the form of the time-dependent Schrddinger equation for a single electron... [Pg.305]

C-Methylation products, o-nitrotoluene and p-nitrotoluene, were obtained when nitrobenzene was treated with dimethylsulfoxonium methylide (I)." The ratio for the ortho and para-methylation products was about 10-15 1 for the aromatic nucleophilic substitution reaction. The reaction appeared to proceed via the single-electron transfer (SET) mechanism according to ESR studies. [Pg.10]

An alternative radical mechanism is formulated as the transfer of a single electron from the Grignard reagent 2 onto the carbonyl group (single electron transfer... [Pg.143]

Historically, ethylene potymerization was carried out at high pressure (1000-3000 atm) and high temperature (100-250 °C) in the presence of a catalyst such as benzoyl peroxide, although other catalysts and reaction conditions are now more often used. The key step is the addition of a radical to the ethylene double bond, a reaction similar in many respects to what takes place in the addition of an electrophile. In writing the mechanism, recall that a curved half-arrow, or "fishhook" A, is used to show the movement of a single electron, as opposed to the full curved arrow used to show the movement of an electron pair in a polar reaction. [Pg.240]

The hydrogen atom, containing a single electron, has played a major role in the development of models of electronic structure. In 1913 Niels Bohr (1885-1962), a Danish physicist, offered a theoretical explanation of the atomic spectrum of hydrogen. His model was based largely on classical mechanics. In 1922 this model earned him the Nobel Prize in physics. By that time, Bohr had become director of the Institute of Theoretical Physics at Copenhagen. There he helped develop the new discipline of quantum mechanics, used by other scientists to construct a more sophisticated model for the hydrogen atom. [Pg.137]

The mechanism proposed for the production of radicals from the N,N-dimethylaniline/BPO couple179,1 involves reaction of the aniline with BPO by a Sn-2 mechanism to produce an intermediate (44). This thermally decomposes to benzoyloxy radicals and an amine radical cation (46) both of which might, in principle, initiate polymerization (Scheme 3.29). Pryor and Hendrikson181 were able to distinguish this mechanism from a process involving single electron transfer through a study of the kinetic isotope effect. [Pg.86]

The early history of redox initiation has been described by Bacon.23 The subject has also been reviewed by Misra and Bajpai,207 Bamford298 and Sarac.2,0 The mechanism of redox initiation is usually bimolecular and involves a single electron transfer as the essential feature of the mechanism that distinguishes it from other initiation processes. Redox initiation systems are in common use when initiation is required at or below ambient temperature and drey are frequently used for initiation of emulsion polymerization. [Pg.104]

It has been well known since the pioneering work of Bunnett59 that some nucleophilic aromatic substitutions can be catalyzed by single electron transfer. Electrochemistry was shown60,61 to be an efficient technique both for inducing reactions and for determining mechanisms and thermodynamic data concerning equilibria in the overall process. [Pg.1039]


See other pages where Single-electron mechanism is mentioned: [Pg.200]    [Pg.90]    [Pg.93]    [Pg.200]    [Pg.305]    [Pg.146]    [Pg.200]    [Pg.90]    [Pg.93]    [Pg.200]    [Pg.305]    [Pg.146]    [Pg.1450]    [Pg.7]    [Pg.409]    [Pg.161]    [Pg.265]    [Pg.389]    [Pg.57]    [Pg.813]    [Pg.349]    [Pg.105]    [Pg.241]    [Pg.933]    [Pg.957]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Electron mechanisms

Electron single

Over-oxidation single electron transfer mechanism

Reaction classifications (single-electron shift mechanism)

Single electron transfer mechanism

Single electron transfer mechanism (SET

Single-electron shift mechanism

© 2024 chempedia.info